Package org.drip.learning.kernel
Class SymmetricRdToNormedRdKernel
java.lang.Object
org.drip.learning.kernel.SymmetricRdToNormedRdKernel
public abstract class SymmetricRdToNormedRdKernel
extends java.lang.Object
SymmetricRdToNormedRdKernel exposes the Functionality behind the Kernel that is Normed
Rd X Normed Rd To Normed Rd, that is, a Kernel that symmetric in the
Input Metric Vector Space in terms of both the Metric and the Dimensionality.
The References are:
The References are:
- Ash, R. (1965): Information Theory Inter-science New York
- Konig, H. (1986): Eigenvalue Distribution of Compact Operators Birkhauser Basel, Switzerland
- Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex Combinations and mlps, in: Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans - editors MIT Press Cambridge, MA
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Banach Mercer Kernels
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description SymmetricRdToNormedRdKernel(RdNormed rdContinuousInput, RdNormed rdContinuousOutput)
SymmetricRdToNormedRdKernel Constructor -
Method Summary
Modifier and Type Method Description abstract double
evaluate(double[] adblX, double[] adblY)
Compute the Kernel's R^d X R^d To R^1 Dot-Product Valueint
featureSpaceDimension()
Compute the Feature Space Input DimensionRdNormed
inputMetricVectorSpace()
Retrieve the Symmetric Input Metric R^d Vector SpaceRdNormed
outputMetricVectorSpace()
Retrieve the Output R^d Metric Vector SpaceMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
SymmetricRdToNormedRdKernel
public SymmetricRdToNormedRdKernel(RdNormed rdContinuousInput, RdNormed rdContinuousOutput) throws java.lang.ExceptionSymmetricRdToNormedRdKernel Constructor- Parameters:
rdContinuousInput
- The Symmetric Input R^d Metric Vector SpacerdContinuousOutput
- The Output R^d Metric Vector Space- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
inputMetricVectorSpace
Retrieve the Symmetric Input Metric R^d Vector Space- Returns:
- The Symmetric Input Metric R^d Vector Space
-
outputMetricVectorSpace
Retrieve the Output R^d Metric Vector Space- Returns:
- The Output R^d Metric Vector Space
-
featureSpaceDimension
public int featureSpaceDimension()Compute the Feature Space Input Dimension- Returns:
- The Feature Space Input Dimension
-
evaluate
public abstract double evaluate(double[] adblX, double[] adblY) throws java.lang.ExceptionCompute the Kernel's R^d X R^d To R^1 Dot-Product Value- Parameters:
adblX
- Validated Vector Instance XadblY
- Validated Vector Instance Y- Returns:
- The Kernel's R^d X R^d To R^1 Dot-Product Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are invalid
-