Class EmpiricalPenaltySupremumEstimator


public class EmpiricalPenaltySupremumEstimator
extends BoundedMultivariateRandom
EmpiricalPenaltySupremumEstimator contains the Implementation of the Empirical Penalty Supremum Estimator dependent on Multivariate Random Variables where the Multivariate Function is a Linear Combination of Bounded Univariate Functions acting on each Random Variate.

Author:
Lakshmi Krishnamurthy
  • Field Details

    • SUPREMUM_PENALTY_EMPIRICAL_LOSS

      public static final int SUPREMUM_PENALTY_EMPIRICAL_LOSS
      Supremum Penalty computed off of Empirical Loss
      See Also:
      Constant Field Values
    • SUPREMUM_PENALTY_STRUCTURAL_LOSS

      public static final int SUPREMUM_PENALTY_STRUCTURAL_LOSS
      Supremum Penalty computed off of Structural Loss
      See Also:
      Constant Field Values
    • SUPREMUM_PENALTY_REGULARIZED_LOSS

      public static final int SUPREMUM_PENALTY_REGULARIZED_LOSS
      Supremum Penalty computed off of Regularized Loss
      See Also:
      Constant Field Values
    • SUPREMUM_PENALTY_EMPIRICAL_RISK

      public static final int SUPREMUM_PENALTY_EMPIRICAL_RISK
      Supremum Penalty computed off of Empirical Risk
      See Also:
      Constant Field Values
    • SUPREMUM_PENALTY_STRUCTURAL_RISK

      public static final int SUPREMUM_PENALTY_STRUCTURAL_RISK
      Supremum Penalty computed off of Structural Risk
      See Also:
      Constant Field Values
    • SUPREMUM_PENALTY_REGULARIZED_RISK

      public static final int SUPREMUM_PENALTY_REGULARIZED_RISK
      Supremum Penalty computed off of Regularized Risk
      See Also:
      Constant Field Values
  • Constructor Details

    • EmpiricalPenaltySupremumEstimator

      public EmpiricalPenaltySupremumEstimator​(int iSupremumPenaltyLossMode, EmpiricalLearningMetricEstimator elme, GeneralizedValidatedVector gvviY, R1R1 distR1R1, RdR1 distRdR1) throws java.lang.Exception
      EmpiricalPenaltySupremumEstimator Constructor
      Parameters:
      iSupremumPenaltyLossMode - Supremum Loss Penalty Mode
      elme - The Empirical Learning Metric Estimator Instance
      gvviY - The Validated Outcome Instance
      distR1R1 - R^1 R^1 Multivariate Measure
      distRdR1 - R^d R^1 Multivariate Measure
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • supremumPenaltyLossMode

      public int supremumPenaltyLossMode()
      The Supremum Penalty Loss Mode Flag
      Returns:
      The Supremum Penalty Loss Mode Flag
    • elme

      Retrieve the Empirical Learning Metric Estimator Instance
      Returns:
      The Empirical Learning Metric Estimator Instance
    • empiricalOutcomes

      public GeneralizedValidatedVector empiricalOutcomes()
      Retrieve the Validated Outcome Instance
      Returns:
      The Validated Outcome Instance
    • supremumR1

      Compute the Empirical Penalty Supremum for the specified R^1 Input Space
      Parameters:
      gvviX - The R^1 Input Space
      Returns:
      The Empirical Penalty Supremum for the specified R^1 Input Space
    • supremumRd

      Compute the Empirical Penalty Supremum for the specified R^d Input Space
      Parameters:
      gvviX - The R^d Input Space
      Returns:
      The Empirical Penalty Supremum for the specified R^d Input Space
    • supremum

      Compute the Empirical Penalty Supremum for the specified R^1/R^d Input Space
      Parameters:
      gvviX - The R^1/R^d Input Space
      Returns:
      The Empirical Penalty Supremum for the specified R^1/R^d Input Space
    • supremumR1ToR1

      public R1ToR1 supremumR1ToR1​(double[] adblX)
      Retrieve the Supremum R^1 To R^1 Function Instance for the specified Variate Sequence
      Parameters:
      adblX - The Predictor Instance
      Returns:
      The Supremum R^1 To R^1 Function Instance
    • supremumRdToR1

      public RdToR1 supremumRdToR1​(double[][] aadblX)
      Retrieve the Supremum R^d To R^1 Function Instance for the specified Variate Sequence
      Parameters:
      aadblX - The Predictor Instance
      Returns:
      The Supremum R^d To R^1 Function Instance
    • dimension

      public int dimension()
      Description copied from class: RdToR1
      Retrieve the Dimension of the Input Variate
      Specified by:
      dimension in class RdToR1
      Returns:
      The Dimension of the Input Variate
    • evaluate

      public double evaluate​(double[] adblX) throws java.lang.Exception
      Description copied from class: RdToR1
      Evaluate for the given Input Variates
      Specified by:
      evaluate in class RdToR1
      Parameters:
      adblX - Array of Input Variates
      Returns:
      The Calculated Value
      Throws:
      java.lang.Exception - Thrown if the Evaluation cannot be done
    • evaluate

      public double evaluate​(double[][] aadblX) throws java.lang.Exception
      Retrieve the Worst-case Loss over the Multivariate Sequence
      Parameters:
      aadblX - The Multivariate Array
      Returns:
      The Worst-case Loss over the Multivariate Sequence
      Throws:
      java.lang.Exception - Thrown if the Worst-Case Loss cannot be computed
    • targetVariateVarianceBound

      public double targetVariateVarianceBound​(int iTargetVariateIndex) throws java.lang.Exception
      Description copied from class: BoundedMultivariateRandom
      Retrieve the Maximal Agnostic Variance Bound over the Non-target Variate Space for the Target Variate
      Specified by:
      targetVariateVarianceBound in class BoundedMultivariateRandom
      Parameters:
      iTargetVariateIndex - The Index corresponding to the Variate on which the Bound is sought
      Returns:
      The Maximal Agnostic Bound over the Non-target Variate Space for the Target Variate
      Throws:
      java.lang.Exception - Thrown if the Inputs are invalid