Package org.drip.learning.rxtor1
Class EmpiricalPenaltySupremumEstimator
java.lang.Object
org.drip.function.definition.RdToR1
org.drip.sequence.functional.MultivariateRandom
org.drip.sequence.functional.BoundedMultivariateRandom
org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
public class EmpiricalPenaltySupremumEstimator extends BoundedMultivariateRandom
EmpiricalPenaltySupremumEstimator contains the Implementation of the Empirical Penalty Supremum
Estimator dependent on Multivariate Random Variables where the Multivariate Function is a Linear
Combination of Bounded Univariate Functions acting on each Random Variate.
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Empirical Loss Penalizer
- Author:
- Lakshmi Krishnamurthy
-
Field Summary
Fields Modifier and Type Field Description static int
SUPREMUM_PENALTY_EMPIRICAL_LOSS
Supremum Penalty computed off of Empirical Lossstatic int
SUPREMUM_PENALTY_EMPIRICAL_RISK
Supremum Penalty computed off of Empirical Riskstatic int
SUPREMUM_PENALTY_REGULARIZED_LOSS
Supremum Penalty computed off of Regularized Lossstatic int
SUPREMUM_PENALTY_REGULARIZED_RISK
Supremum Penalty computed off of Regularized Riskstatic int
SUPREMUM_PENALTY_STRUCTURAL_LOSS
Supremum Penalty computed off of Structural Lossstatic int
SUPREMUM_PENALTY_STRUCTURAL_RISK
Supremum Penalty computed off of Structural Risk -
Constructor Summary
Constructors Constructor Description EmpiricalPenaltySupremumEstimator(int iSupremumPenaltyLossMode, EmpiricalLearningMetricEstimator elme, GeneralizedValidatedVector gvviY, R1R1 distR1R1, RdR1 distRdR1)
EmpiricalPenaltySupremumEstimator Constructor -
Method Summary
Modifier and Type Method Description int
dimension()
Retrieve the Dimension of the Input VariateEmpiricalLearningMetricEstimator
elme()
Retrieve the Empirical Learning Metric Estimator InstanceGeneralizedValidatedVector
empiricalOutcomes()
Retrieve the Validated Outcome Instancedouble
evaluate(double[] adblX)
Evaluate for the given Input Variatesdouble
evaluate(double[][] aadblX)
Retrieve the Worst-case Loss over the Multivariate SequenceEmpiricalPenaltySupremum
supremum(GeneralizedValidatedVector gvviX)
Compute the Empirical Penalty Supremum for the specified R^1/R^d Input Spaceint
supremumPenaltyLossMode()
The Supremum Penalty Loss Mode FlagEmpiricalPenaltySupremum
supremumR1(GeneralizedValidatedVector gvviX)
Compute the Empirical Penalty Supremum for the specified R^1 Input SpaceR1ToR1
supremumR1ToR1(double[] adblX)
Retrieve the Supremum R^1 To R^1 Function Instance for the specified Variate SequenceEmpiricalPenaltySupremum
supremumRd(GeneralizedValidatedVector gvviX)
Compute the Empirical Penalty Supremum for the specified R^d Input SpaceRdToR1
supremumRdToR1(double[][] aadblX)
Retrieve the Supremum R^d To R^1 Function Instance for the specified Variate Sequencedouble
targetVariateVarianceBound(int iTargetVariateIndex)
Retrieve the Maximal Agnostic Variance Bound over the Non-target Variate Space for the Target VariateMethods inherited from class org.drip.sequence.functional.MultivariateRandom
conditionalTargetVariateMetrics, conditionalTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, unconditionalTargetVariateMetrics
Methods inherited from class org.drip.function.definition.RdToR1
conditionNumber, conditionNumberL2, conditionNumberLInfinity, conditionNumberLp, derivative, differential, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInput
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Field Details
-
SUPREMUM_PENALTY_EMPIRICAL_LOSS
public static final int SUPREMUM_PENALTY_EMPIRICAL_LOSSSupremum Penalty computed off of Empirical Loss- See Also:
- Constant Field Values
-
SUPREMUM_PENALTY_STRUCTURAL_LOSS
public static final int SUPREMUM_PENALTY_STRUCTURAL_LOSSSupremum Penalty computed off of Structural Loss- See Also:
- Constant Field Values
-
SUPREMUM_PENALTY_REGULARIZED_LOSS
public static final int SUPREMUM_PENALTY_REGULARIZED_LOSSSupremum Penalty computed off of Regularized Loss- See Also:
- Constant Field Values
-
SUPREMUM_PENALTY_EMPIRICAL_RISK
public static final int SUPREMUM_PENALTY_EMPIRICAL_RISKSupremum Penalty computed off of Empirical Risk- See Also:
- Constant Field Values
-
SUPREMUM_PENALTY_STRUCTURAL_RISK
public static final int SUPREMUM_PENALTY_STRUCTURAL_RISKSupremum Penalty computed off of Structural Risk- See Also:
- Constant Field Values
-
SUPREMUM_PENALTY_REGULARIZED_RISK
public static final int SUPREMUM_PENALTY_REGULARIZED_RISKSupremum Penalty computed off of Regularized Risk- See Also:
- Constant Field Values
-
-
Constructor Details
-
EmpiricalPenaltySupremumEstimator
public EmpiricalPenaltySupremumEstimator(int iSupremumPenaltyLossMode, EmpiricalLearningMetricEstimator elme, GeneralizedValidatedVector gvviY, R1R1 distR1R1, RdR1 distRdR1) throws java.lang.ExceptionEmpiricalPenaltySupremumEstimator Constructor- Parameters:
iSupremumPenaltyLossMode
- Supremum Loss Penalty Modeelme
- The Empirical Learning Metric Estimator InstancegvviY
- The Validated Outcome InstancedistR1R1
- R^1 R^1 Multivariate MeasuredistRdR1
- R^d R^1 Multivariate Measure- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
supremumPenaltyLossMode
public int supremumPenaltyLossMode()The Supremum Penalty Loss Mode Flag- Returns:
- The Supremum Penalty Loss Mode Flag
-
elme
Retrieve the Empirical Learning Metric Estimator Instance- Returns:
- The Empirical Learning Metric Estimator Instance
-
empiricalOutcomes
Retrieve the Validated Outcome Instance- Returns:
- The Validated Outcome Instance
-
supremumR1
Compute the Empirical Penalty Supremum for the specified R^1 Input Space- Parameters:
gvviX
- The R^1 Input Space- Returns:
- The Empirical Penalty Supremum for the specified R^1 Input Space
-
supremumRd
Compute the Empirical Penalty Supremum for the specified R^d Input Space- Parameters:
gvviX
- The R^d Input Space- Returns:
- The Empirical Penalty Supremum for the specified R^d Input Space
-
supremum
Compute the Empirical Penalty Supremum for the specified R^1/R^d Input Space- Parameters:
gvviX
- The R^1/R^d Input Space- Returns:
- The Empirical Penalty Supremum for the specified R^1/R^d Input Space
-
supremumR1ToR1
Retrieve the Supremum R^1 To R^1 Function Instance for the specified Variate Sequence- Parameters:
adblX
- The Predictor Instance- Returns:
- The Supremum R^1 To R^1 Function Instance
-
supremumRdToR1
Retrieve the Supremum R^d To R^1 Function Instance for the specified Variate Sequence- Parameters:
aadblX
- The Predictor Instance- Returns:
- The Supremum R^d To R^1 Function Instance
-
dimension
public int dimension()Description copied from class:RdToR1
Retrieve the Dimension of the Input Variate -
evaluate
public double evaluate(double[] adblX) throws java.lang.ExceptionDescription copied from class:RdToR1
Evaluate for the given Input Variates -
evaluate
public double evaluate(double[][] aadblX) throws java.lang.ExceptionRetrieve the Worst-case Loss over the Multivariate Sequence- Parameters:
aadblX
- The Multivariate Array- Returns:
- The Worst-case Loss over the Multivariate Sequence
- Throws:
java.lang.Exception
- Thrown if the Worst-Case Loss cannot be computed
-
targetVariateVarianceBound
public double targetVariateVarianceBound(int iTargetVariateIndex) throws java.lang.ExceptionDescription copied from class:BoundedMultivariateRandom
Retrieve the Maximal Agnostic Variance Bound over the Non-target Variate Space for the Target Variate- Specified by:
targetVariateVarianceBound
in classBoundedMultivariateRandom
- Parameters:
iTargetVariateIndex
- The Index corresponding to the Variate on which the Bound is sought- Returns:
- The Maximal Agnostic Bound over the Non-target Variate Space for the Target Variate
- Throws:
java.lang.Exception
- Thrown if the Inputs are invalid
-