Package org.drip.learning.rxtor1
Interface EmpiricalLearningMetricEstimator
- All Known Implementing Classes:
ApproximateLipschitzLossLearner,GeneralizedLearner,L1LossLearner,LipschitzLossLearner,LpLossLearner
public interface EmpiricalLearningMetricEstimator
EmpiricalLearningMetricEstimator is the Estimator of the Empirical Loss and Risk, as well as the
corresponding Covering Numbers.
The References are:
The References are:
- Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform Convergence, and Learnability Journal of Association of Computational Machinery 44 (4) 615-631
- Anthony, M., and P. L. Bartlett (1999): Artificial Neural Network Learning - Theoretical Foundations Cambridge University Press Cambridge, UK
- Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): Towards Efficient Agnostic Learning Machine Learning 17 (2) 115-141
- Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with Squared Loss IEEE Transactions on Information Theory 44 1974-1980
- Vapnik, V. N. (1998): Statistical learning Theory Wiley New York
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Empirical Loss Penalizer
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description doubleempiricalLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Empirical Sample LossdoubleempiricalLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Empirical Sample LossdoubleempiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Empirical Sample RiskdoubleempiricalRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Empirical Sample RiskNormedRxToNormedR1FinitefunctionClass()Retrieve the Underlying Learner Function ClassdoublelossSampleCoveringNumber(GeneralizedValidatedVector gvvi, double dblEpsilon, boolean bSupremum)Retrieve the Loss Class Sample Covering Number - L-Infinity or L-p based BaseddoubleregularizedLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Regularized Sample Loss (Empirical + Structural)doubleregularizedLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Regularized Sample Loss (Empirical + Structural)doubleregularizedRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Regularized Sample Risk (Empirical + Structural)doubleregularizedRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Regularized Sample Risk (Empirical + Structural)RegularizationFunctionregularizerFunction()Retrieve the Regularizer FunctiondoublestructuralLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvvi)Compute the Structural Sample LossdoublestructuralLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvvi)Compute the Structural Sample LossdoublestructuralRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Structural Sample RiskdoublestructuralRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Structural Sample RiskEmpiricalPenaltySupremumsupremumEmpiricalLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Supremum Empirical Sample LossEmpiricalPenaltySupremumsupremumEmpiricalRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Supremum Empirical Sample RiskEmpiricalPenaltySupremumsupremumEmpiricalRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Supremum Empirical Sample RiskEmpiricalPenaltySupremumsupremumRegularizedLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Supremum Regularized Sample LossEmpiricalPenaltySupremumsupremumRegularizedRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Supremum Regularized Sample RiskEmpiricalPenaltySupremumsupremumRegularizedRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Supremum Regularized Sample RiskEmpiricalPenaltySupremumsupremumStructuralLoss(GeneralizedValidatedVector gvviX)Compute the Supremum Structural Sample LossEmpiricalPenaltySupremumsupremumStructuralRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Supremum Structural Sample RiskEmpiricalPenaltySupremumsupremumStructuralRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Compute the Supremum Structural Sample Risk
-
Method Details
-
functionClass
NormedRxToNormedR1Finite functionClass()Retrieve the Underlying Learner Function Class- Returns:
- The Underlying Learner Function Class
-
regularizerFunction
RegularizationFunction regularizerFunction()Retrieve the Regularizer Function- Returns:
- The Regularizer Function
-
lossSampleCoveringNumber
double lossSampleCoveringNumber(GeneralizedValidatedVector gvvi, double dblEpsilon, boolean bSupremum) throws java.lang.ExceptionRetrieve the Loss Class Sample Covering Number - L-Infinity or L-p based Based- Parameters:
gvvi- The Validated Instance Vector SequencedblEpsilon- The Deviation of the Empirical Mean from the Population MeanbSupremum- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Loss Class Sample Covering Number - L-Infinity or L-p based Based
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
empiricalLoss
double empiricalLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Empirical Sample Loss- Parameters:
funcLearnerR1ToR1- The R^1 To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Empirical Loss
- Throws:
java.lang.Exception- Thrown if the Empirical Loss cannot be computed
-
empiricalLoss
double empiricalLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Empirical Sample Loss- Parameters:
funcLearnerRdToR1- The R^d To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Empirical Loss
- Throws:
java.lang.Exception- Thrown if the Empirical Loss cannot be computed
-
supremumEmpiricalLoss
EmpiricalPenaltySupremum supremumEmpiricalLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Supremum Empirical Sample Loss- Parameters:
gvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Supremum Empirical Sample Loss
- Throws:
java.lang.Exception- Thrown if the Supremum Empirical Sample Loss cannot be computed
-
structuralLoss
double structuralLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvvi) throws java.lang.ExceptionCompute the Structural Sample Loss- Parameters:
funcLearnerR1ToR1- The R^1 To R^1 Learner Functiongvvi- The Validated Predictor Instance- Returns:
- The Structural Loss
- Throws:
java.lang.Exception- Thrown if the Structural Loss cannot be computed
-
structuralLoss
double structuralLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvvi) throws java.lang.ExceptionCompute the Structural Sample Loss- Parameters:
funcLearnerRdToR1- The R^d To R^1 Learner Functiongvvi- The Validated Predictor Instance- Returns:
- The Structural Loss
- Throws:
java.lang.Exception- Thrown if the Structural Loss cannot be computed
-
supremumStructuralLoss
EmpiricalPenaltySupremum supremumStructuralLoss(GeneralizedValidatedVector gvviX) throws java.lang.ExceptionCompute the Supremum Structural Sample Loss- Parameters:
gvviX- The Validated Predictor Instance- Returns:
- The Supremum Structural Sample Loss
- Throws:
java.lang.Exception- Thrown if the Supremum Structural Sample Loss cannot be computed
-
regularizedLoss
double regularizedLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Regularized Sample Loss (Empirical + Structural)- Parameters:
funcLearnerR1ToR1- The R^1 To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Regularized Loss
- Throws:
java.lang.Exception- Thrown if the Regularized Loss cannot be computed
-
regularizedLoss
double regularizedLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Regularized Sample Loss (Empirical + Structural)- Parameters:
funcLearnerRdToR1- The R^d To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Regularized Loss
- Throws:
java.lang.Exception- Thrown if the Regularized Loss cannot be computed
-
supremumRegularizedLoss
EmpiricalPenaltySupremum supremumRegularizedLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Supremum Regularized Sample Loss- Parameters:
gvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Supremum Regularized Sample Loss
- Throws:
java.lang.Exception- Thrown if the Supremum Regularized Sample Loss cannot be computed
-
empiricalRisk
double empiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Empirical Sample Risk- Parameters:
distR1R1- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1- The R^1 To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Empirical Sample Risk
- Throws:
java.lang.Exception- Thrown if the Empirical Sample Risk cannot be computed
-
empiricalRisk
double empiricalRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Empirical Sample Risk- Parameters:
distRdR1- R^d R^1 Multivariate MeasurefuncLearnerRdToR1- The R^d To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Empirical Sample Risk
- Throws:
java.lang.Exception- Thrown if the Empirical Sample Risk cannot be computed
-
supremumEmpiricalRisk
EmpiricalPenaltySupremum supremumEmpiricalRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Supremum Empirical Sample Risk- Parameters:
distR1R1- R^1 R^1 Multivariate MeasuregvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Supremum Empirical Sample Loss
- Throws:
java.lang.Exception- Thrown if the Supremum Empirical Sample Loss cannot be computed
-
supremumEmpiricalRisk
EmpiricalPenaltySupremum supremumEmpiricalRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Supremum Empirical Sample Risk- Parameters:
distRdR1- R^d R^1 Multivariate MeasuregvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Supremum Empirical Sample Loss
- Throws:
java.lang.Exception- Thrown if the Supremum Empirical Sample Loss cannot be computed
-
structuralRisk
double structuralRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Structural Sample Risk- Parameters:
distR1R1- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1- The R^1 To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Structural Risk
- Throws:
java.lang.Exception- Thrown if the Structural Risk cannot be computed
-
structuralRisk
double structuralRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Structural Sample Risk- Parameters:
distRdR1- R^d R^1 Multivariate MeasurefuncLearnerRdToR1- The R^d To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Structural Risk
- Throws:
java.lang.Exception- Thrown if the Structural Risk cannot be computed
-
supremumStructuralRisk
EmpiricalPenaltySupremum supremumStructuralRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Supremum Structural Sample Risk- Parameters:
distR1R1- R^1 R^1 Multivariate MeasuregvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Supremum Structural Sample Loss
- Throws:
java.lang.Exception- Thrown if the Supremum Structural Sample Risk cannot be computed
-
supremumStructuralRisk
EmpiricalPenaltySupremum supremumStructuralRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Supremum Structural Sample Risk- Parameters:
distRdR1- R^d R^1 Multivariate MeasuregvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Supremum Structural Sample Risk
- Throws:
java.lang.Exception- Thrown if the Supremum Structural Sample Risk cannot be computed
-
regularizedRisk
double regularizedRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Regularized Sample Risk (Empirical + Structural)- Parameters:
distR1R1- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1- The R^1 To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Regularized Sample Risk
- Throws:
java.lang.Exception- Thrown if the Regularized Sample Risk cannot be computed
-
regularizedRisk
double regularizedRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Regularized Sample Risk (Empirical + Structural)- Parameters:
distRdR1- R^d R^1 Multivariate MeasurefuncLearnerRdToR1- The R^d To R^1 Learner FunctiongvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Regularized Sample Risk
- Throws:
java.lang.Exception- Thrown if the Regularized Sample Risk cannot be computed
-
supremumRegularizedRisk
EmpiricalPenaltySupremum supremumRegularizedRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Supremum Regularized Sample Risk- Parameters:
distR1R1- R^1 R^1 Multivariate MeasuregvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Supremum Regularized Sample Risk
- Throws:
java.lang.Exception- Thrown if the Supremum Regularized Sample Risk cannot be computed
-
supremumRegularizedRisk
EmpiricalPenaltySupremum supremumRegularizedRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionCompute the Supremum Regularized Sample Risk- Parameters:
distRdR1- R^d R^1 Multivariate MeasuregvviX- The Validated Predictor InstancegvviY- The Validated Response Instance- Returns:
- The Supremum Regularized Sample Risk
- Throws:
java.lang.Exception- Thrown if the Supremum Regularized Sample Risk cannot be computed
-