Package org.drip.learning.rxtor1
Class GeneralizedLearner
java.lang.Object
org.drip.learning.rxtor1.GeneralizedLearner
- All Implemented Interfaces:
EmpiricalLearningMetricEstimator
- Direct Known Subclasses:
L1LossLearner
,LipschitzLossLearner
,LpLossLearner
public abstract class GeneralizedLearner extends java.lang.Object implements EmpiricalLearningMetricEstimator
GeneralizedLearner implements the Learner Class that holds the Space of Normed Rx To
Normed R1 Learning Functions along with their Custom Empirical Loss. Class-Specific Asymptotic
Sample, Covering Number based Upper Probability Bounds and other Parameters are also maintained.
The References are:
The References are:
- Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform Convergence, and Learnability Journal of Association of Computational Machinery 44 (4) 615-631
- Anthony, M., and P. L. Bartlett (1999): Artificial Neural Network Learning - Theoretical Foundations Cambridge University Press Cambridge, UK
- Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): Towards Efficient Agnostic Learning Machine Learning 17 (2) 115-141
- Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with Squared Loss IEEE Transactions on Information Theory 44 1974-1980
- Vapnik, V. N. (1998): Statistical learning Theory Wiley New York
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Empirical Loss Penalizer
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description GeneralizedLearner(NormedRxToNormedR1Finite funcClassRxToR1, CoveringNumberLossBound funcClassCNLB, RegularizationFunction regularizerFunc)
GeneralizedLearner Constructor -
Method Summary
Modifier and Type Method Description CoveringNumberLossBound
coveringLossBoundEvaluator()
Retrieve the Covering Number based Deviation Upper Probability Bound GeneratorNormedRxToNormedR1Finite
functionClass()
Retrieve the Underlying Learner Function Classdouble
genericCoveringProbabilityBound(int iSampleSize, double dblEpsilon, boolean bSupremum)
Compute the Upper Bound of the Probability of the Absolute Deviation of the Empirical Mean from the Population Mean using the Function Class Supremum Covering Number for General-Purpose Learningdouble
genericCoveringProbabilityBound(GeneralizedValidatedVector gvvi, int iSampleSize, double dblEpsilon, boolean bSupremum)
Compute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between the Empirical and the Population Means using the Function Class Supremum Covering Number for General-Purpose Learningdouble
genericCoveringSampleSize(double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum)
Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for the Specified Empirical Deviation using the Covering Number Convergence Bounds.double
genericCoveringSampleSize(GeneralizedValidatedVector gvvi, double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum)
Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for the Specified Empirical Deviation using the Covering Number Convergence Bounds.double
regressorCoveringProbabilityBound(int iSampleSize, double dblEpsilon, boolean bSupremum)
Compute the Upper Bound of the Probability of the Absolute Deviation between the Empirical and the Population Means using the Function Class Supremum Covering Number for Regression Learningdouble
regressorCoveringProbabilityBound(GeneralizedValidatedVector gvvi, int iSampleSize, double dblEpsilon, boolean bSupremum)
Compute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between the Empirical and the Population Means using the Function Class Supremum Covering Number for Regression Learningdouble
regressorCoveringSampleSize(double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum)
Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression Learning.double
regressorCoveringSampleSize(GeneralizedValidatedVector gvvi, double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum)
Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression Learning.double
regularizedLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Loss (Empirical + Structural)double
regularizedLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Loss (Empirical + Structural)double
regularizedRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)double
regularizedRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Regularized Sample Risk (Empirical + Structural)RegularizationFunction
regularizerFunction()
Retrieve the Regularizer Functiondouble
structuralLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvvi)
Compute the Structural Sample Lossdouble
structuralLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvvi)
Compute the Structural Sample Lossdouble
structuralRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Structural Sample Riskdouble
structuralRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Structural Sample RiskEmpiricalPenaltySupremum
supremumEmpiricalLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample LossEmpiricalPenaltySupremum
supremumEmpiricalRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample RiskEmpiricalPenaltySupremum
supremumEmpiricalRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Empirical Sample RiskEmpiricalPenaltySupremum
supremumRegularizedLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample LossEmpiricalPenaltySupremum
supremumRegularizedRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample RiskEmpiricalPenaltySupremum
supremumRegularizedRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Regularized Sample RiskEmpiricalPenaltySupremum
supremumStructuralLoss(GeneralizedValidatedVector gvviX)
Compute the Supremum Structural Sample LossEmpiricalPenaltySupremum
supremumStructuralRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Structural Sample RiskEmpiricalPenaltySupremum
supremumStructuralRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Supremum Structural Sample RiskMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.drip.learning.rxtor1.EmpiricalLearningMetricEstimator
empiricalLoss, empiricalLoss, empiricalRisk, empiricalRisk, lossSampleCoveringNumber
-
Constructor Details
-
GeneralizedLearner
public GeneralizedLearner(NormedRxToNormedR1Finite funcClassRxToR1, CoveringNumberLossBound funcClassCNLB, RegularizationFunction regularizerFunc) throws java.lang.ExceptionGeneralizedLearner Constructor- Parameters:
funcClassRxToR1
- R^x To R^1 Function ClassfuncClassCNLB
- The Function Class Covering Number based Deviation Upper Probability Bound GeneratorregularizerFunc
- The Regularizer Function- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
functionClass
Description copied from interface:EmpiricalLearningMetricEstimator
Retrieve the Underlying Learner Function Class- Specified by:
functionClass
in interfaceEmpiricalLearningMetricEstimator
- Returns:
- The Underlying Learner Function Class
-
regularizerFunction
Description copied from interface:EmpiricalLearningMetricEstimator
Retrieve the Regularizer Function- Specified by:
regularizerFunction
in interfaceEmpiricalLearningMetricEstimator
- Returns:
- The Regularizer Function
-
supremumEmpiricalLoss
public EmpiricalPenaltySupremum supremumEmpiricalLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Description copied from interface:EmpiricalLearningMetricEstimator
Compute the Supremum Empirical Sample Loss- Specified by:
supremumEmpiricalLoss
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
gvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Supremum Empirical Sample Loss
-
structuralLoss
public double structuralLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvvi) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Structural Sample Loss- Specified by:
structuralLoss
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
funcLearnerR1ToR1
- The R^1 To R^1 Learner Functiongvvi
- The Validated Predictor Instance- Returns:
- The Structural Loss
- Throws:
java.lang.Exception
- Thrown if the Structural Loss cannot be computed
-
structuralLoss
public double structuralLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvvi) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Structural Sample Loss- Specified by:
structuralLoss
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
funcLearnerRdToR1
- The R^d To R^1 Learner Functiongvvi
- The Validated Predictor Instance- Returns:
- The Structural Loss
- Throws:
java.lang.Exception
- Thrown if the Structural Loss cannot be computed
-
supremumStructuralLoss
Description copied from interface:EmpiricalLearningMetricEstimator
Compute the Supremum Structural Sample Loss- Specified by:
supremumStructuralLoss
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
gvviX
- The Validated Predictor Instance- Returns:
- The Supremum Structural Sample Loss
-
regularizedLoss
public double regularizedLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Regularized Sample Loss (Empirical + Structural)- Specified by:
regularizedLoss
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
funcLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Regularized Loss
- Throws:
java.lang.Exception
- Thrown if the Regularized Loss cannot be computed
-
regularizedLoss
public double regularizedLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Regularized Sample Loss (Empirical + Structural)- Specified by:
regularizedLoss
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
funcLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Regularized Loss
- Throws:
java.lang.Exception
- Thrown if the Regularized Loss cannot be computed
-
supremumRegularizedLoss
public EmpiricalPenaltySupremum supremumRegularizedLoss(GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Description copied from interface:EmpiricalLearningMetricEstimator
Compute the Supremum Regularized Sample Loss- Specified by:
supremumRegularizedLoss
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
gvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Supremum Regularized Sample Loss
-
supremumEmpiricalRisk
public EmpiricalPenaltySupremum supremumEmpiricalRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Description copied from interface:EmpiricalLearningMetricEstimator
Compute the Supremum Empirical Sample Risk- Specified by:
supremumEmpiricalRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distR1R1
- R^1 R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Supremum Empirical Sample Loss
-
supremumEmpiricalRisk
public EmpiricalPenaltySupremum supremumEmpiricalRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Description copied from interface:EmpiricalLearningMetricEstimator
Compute the Supremum Empirical Sample Risk- Specified by:
supremumEmpiricalRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distRdR1
- R^d R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Supremum Empirical Sample Loss
-
structuralRisk
public double structuralRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Structural Sample Risk- Specified by:
structuralRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distR1R1
- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Structural Risk
- Throws:
java.lang.Exception
- Thrown if the Structural Risk cannot be computed
-
structuralRisk
public double structuralRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Structural Sample Risk- Specified by:
structuralRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distRdR1
- R^d R^1 Multivariate MeasurefuncLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Structural Risk
- Throws:
java.lang.Exception
- Thrown if the Structural Risk cannot be computed
-
supremumStructuralRisk
public EmpiricalPenaltySupremum supremumStructuralRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Description copied from interface:EmpiricalLearningMetricEstimator
Compute the Supremum Structural Sample Risk- Specified by:
supremumStructuralRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distR1R1
- R^1 R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Supremum Structural Sample Loss
-
supremumStructuralRisk
public EmpiricalPenaltySupremum supremumStructuralRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Description copied from interface:EmpiricalLearningMetricEstimator
Compute the Supremum Structural Sample Risk- Specified by:
supremumStructuralRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distRdR1
- R^d R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Supremum Structural Sample Risk
-
regularizedRisk
public double regularizedRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Regularized Sample Risk (Empirical + Structural)- Specified by:
regularizedRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distR1R1
- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Regularized Sample Risk
- Throws:
java.lang.Exception
- Thrown if the Regularized Sample Risk cannot be computed
-
regularizedRisk
public double regularizedRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Regularized Sample Risk (Empirical + Structural)- Specified by:
regularizedRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distRdR1
- R^d R^1 Multivariate MeasurefuncLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Regularized Sample Risk
- Throws:
java.lang.Exception
- Thrown if the Regularized Sample Risk cannot be computed
-
supremumRegularizedRisk
public EmpiricalPenaltySupremum supremumRegularizedRisk(R1R1 distR1R1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Description copied from interface:EmpiricalLearningMetricEstimator
Compute the Supremum Regularized Sample Risk- Specified by:
supremumRegularizedRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distR1R1
- R^1 R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Supremum Regularized Sample Risk
-
supremumRegularizedRisk
public EmpiricalPenaltySupremum supremumRegularizedRisk(RdR1 distRdR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)Description copied from interface:EmpiricalLearningMetricEstimator
Compute the Supremum Regularized Sample Risk- Specified by:
supremumRegularizedRisk
in interfaceEmpiricalLearningMetricEstimator
- Parameters:
distRdR1
- R^d R^1 Multivariate MeasuregvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Supremum Regularized Sample Risk
-
coveringLossBoundEvaluator
Retrieve the Covering Number based Deviation Upper Probability Bound Generator- Returns:
- The Covering Number based Deviation Upper Probability Bound Generator
-
genericCoveringProbabilityBound
public double genericCoveringProbabilityBound(int iSampleSize, double dblEpsilon, boolean bSupremum) throws java.lang.ExceptionCompute the Upper Bound of the Probability of the Absolute Deviation of the Empirical Mean from the Population Mean using the Function Class Supremum Covering Number for General-Purpose Learning- Parameters:
iSampleSize
- The Sample SizedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Upper Bound of the Probability of the Absolute Deviation of the Empirical Mean from the Population Mean using the Function Class Supremum Covering Number for General-Purpose Learning
- Throws:
java.lang.Exception
- Thrown if the Upper Probability Bound cannot be computed
-
genericCoveringSampleSize
public double genericCoveringSampleSize(double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum) throws java.lang.ExceptionCompute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for the Specified Empirical Deviation using the Covering Number Convergence Bounds.- Parameters:
dblEpsilon
- The Deviation of the Empirical Mean from the Population MeandblDeviationUpperProbabilityBound
- The Upper Bound of the Probability for the given DeviationbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Minimum Possible Sample Size
- Throws:
java.lang.Exception
- Thrown if the Minimum Sample Size cannot be computed
-
genericCoveringProbabilityBound
public double genericCoveringProbabilityBound(GeneralizedValidatedVector gvvi, int iSampleSize, double dblEpsilon, boolean bSupremum) throws java.lang.ExceptionCompute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between the Empirical and the Population Means using the Function Class Supremum Covering Number for General-Purpose Learning- Parameters:
gvvi
- The Validated Instance Vector SequenceiSampleSize
- The Sample SizedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between the Empirical and the Population Means using the Function Class Supremum Covering Number for General-Purpose Learning
- Throws:
java.lang.Exception
- Thrown if the Upper Probability Bound cannot be computed
-
genericCoveringSampleSize
public double genericCoveringSampleSize(GeneralizedValidatedVector gvvi, double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum) throws java.lang.ExceptionCompute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for the Specified Empirical Deviation using the Covering Number Convergence Bounds.- Parameters:
gvvi
- The Validated Instance Vector SequencedblEpsilon
- The Deviation of the Empirical Mean from the Population MeandblDeviationUpperProbabilityBound
- The Upper Bound of the Probability for the given DeviationbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Minimum Possible Sample Size
- Throws:
java.lang.Exception
- Thrown if the Minimum Sample Size cannot be computed
-
regressorCoveringProbabilityBound
public double regressorCoveringProbabilityBound(int iSampleSize, double dblEpsilon, boolean bSupremum) throws java.lang.ExceptionCompute the Upper Bound of the Probability of the Absolute Deviation between the Empirical and the Population Means using the Function Class Supremum Covering Number for Regression Learning- Parameters:
iSampleSize
- The Sample SizedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Upper Bound of the Probability of the Absolute Deviation between the Empirical and the Population Means using the Function Class Supremum Covering Number for Regression Learning
- Throws:
java.lang.Exception
- Thrown if the Upper Probability Bound cannot be computed
-
regressorCoveringSampleSize
public double regressorCoveringSampleSize(double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum) throws java.lang.ExceptionCompute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression Learning.- Parameters:
dblEpsilon
- The Deviation of the Empirical Mean from the Population MeandblDeviationUpperProbabilityBound
- The Upper Bound of the Probability for the given DeviationbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Minimum Possible Sample Size
- Throws:
java.lang.Exception
- Thrown if the Minimum Sample Size cannot be computed
-
regressorCoveringProbabilityBound
public double regressorCoveringProbabilityBound(GeneralizedValidatedVector gvvi, int iSampleSize, double dblEpsilon, boolean bSupremum) throws java.lang.ExceptionCompute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between the Empirical and the Population Means using the Function Class Supremum Covering Number for Regression Learning- Parameters:
gvvi
- The Validated Instance Vector SequenceiSampleSize
- The Sample SizedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between the Empirical and the Population Means using the Function Class Supremum Covering Number for Regression Learning
- Throws:
java.lang.Exception
- Thrown if the Upper Probability Bound cannot be computed
-
regressorCoveringSampleSize
public double regressorCoveringSampleSize(GeneralizedValidatedVector gvvi, double dblEpsilon, double dblDeviationUpperProbabilityBound, boolean bSupremum) throws java.lang.ExceptionCompute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression Learning.- Parameters:
gvvi
- The Validated Instance Vector SequencedblEpsilon
- The Deviation of the Empirical Mean from the Population MeandblDeviationUpperProbabilityBound
- The Upper Bound of the Probability for the given DeviationbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Minimum Possible Sample Size
- Throws:
java.lang.Exception
- Thrown if the Minimum Sample Size cannot be computed
-