Package org.drip.learning.rxtor1
Class LipschitzLossLearner
java.lang.Object
org.drip.learning.rxtor1.GeneralizedLearner
org.drip.learning.rxtor1.LipschitzLossLearner
- All Implemented Interfaces:
EmpiricalLearningMetricEstimator
- Direct Known Subclasses:
ApproximateLipschitzLossLearner
public class LipschitzLossLearner extends GeneralizedLearner
LipschitzLossLearner implements the Learner Class that holds the Space of Normed R1 To
Normed R1 Learning Functions for the Family of Loss Functions that are Lipschitz, i.e.,
loss (ep) - loss (ep') Less Than C * |ep-ep'|
The References are:
The References are:
- Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform Convergence, and Learnability Journal of Association of Computational Machinery 44 (4) 615-631
- Anthony, M., and P. L. Bartlett (1999): Artificial Neural Network Learning - Theoretical Foundations Cambridge University Press Cambridge, UK
- Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): Towards Efficient Agnostic Learning Machine Learning 17 (2) 115-141
- Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with Squared Loss IEEE Transactions on Information Theory 44 1974-1980
- Vapnik, V. N. (1998): Statistical learning Theory Wiley New York
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Empirical Loss Penalizer
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description LipschitzLossLearner(NormedRxToNormedR1Finite funcClassRxToR1, CoveringNumberLossBound cdpb, RegularizationFunction regularizerFunc, double dblLipschitzSlope)
LipschitzLossLearner Constructor -
Method Summary
Modifier and Type Method Description double
empiricalLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Lossdouble
empiricalLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Lossdouble
empiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Riskdouble
empiricalRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY)
Compute the Empirical Sample Riskdouble
lipschitzSlope()
Retrieve the Lipschitz Slope Bounddouble
lossSampleCoveringNumber(GeneralizedValidatedVector gvvi, double dblEpsilon, boolean bSupremum)
Retrieve the Loss Class Sample Covering Number - L-Infinity or L-p based BasedMethods inherited from class org.drip.learning.rxtor1.GeneralizedLearner
coveringLossBoundEvaluator, functionClass, genericCoveringProbabilityBound, genericCoveringProbabilityBound, genericCoveringSampleSize, genericCoveringSampleSize, regressorCoveringProbabilityBound, regressorCoveringProbabilityBound, regressorCoveringSampleSize, regressorCoveringSampleSize, regularizedLoss, regularizedLoss, regularizedRisk, regularizedRisk, regularizerFunction, structuralLoss, structuralLoss, structuralRisk, structuralRisk, supremumEmpiricalLoss, supremumEmpiricalRisk, supremumEmpiricalRisk, supremumRegularizedLoss, supremumRegularizedRisk, supremumRegularizedRisk, supremumStructuralLoss, supremumStructuralRisk, supremumStructuralRisk
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
LipschitzLossLearner
public LipschitzLossLearner(NormedRxToNormedR1Finite funcClassRxToR1, CoveringNumberLossBound cdpb, RegularizationFunction regularizerFunc, double dblLipschitzSlope) throws java.lang.ExceptionLipschitzLossLearner Constructor- Parameters:
funcClassRxToR1
- R^x To R^1 Function Classcdpb
- The Covering Number based Deviation Upper Probability Bound GeneratorregularizerFunc
- The Regularizer FunctiondblLipschitzSlope
- The Lipschitz Slope Bound- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
lipschitzSlope
public double lipschitzSlope()Retrieve the Lipschitz Slope Bound- Returns:
- The Lipschitz Slope Bound
-
lossSampleCoveringNumber
public double lossSampleCoveringNumber(GeneralizedValidatedVector gvvi, double dblEpsilon, boolean bSupremum) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Retrieve the Loss Class Sample Covering Number - L-Infinity or L-p based Based- Parameters:
gvvi
- The Validated Instance Vector SequencedblEpsilon
- The Deviation of the Empirical Mean from the Population MeanbSupremum
- TRUE To Use the Supremum Metric in place of the Built-in Metric- Returns:
- The Loss Class Sample Covering Number - L-Infinity or L-p based Based
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
empiricalLoss
public double empiricalLoss(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Empirical Sample Loss- Parameters:
funcLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Empirical Loss
- Throws:
java.lang.Exception
- Thrown if the Empirical Loss cannot be computed
-
empiricalLoss
public double empiricalLoss(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Empirical Sample Loss- Parameters:
funcLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Empirical Loss
- Throws:
java.lang.Exception
- Thrown if the Empirical Loss cannot be computed
-
empiricalRisk
public double empiricalRisk(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Empirical Sample Risk- Parameters:
distR1R1
- R^1 R^1 Multivariate MeasurefuncLearnerR1ToR1
- The R^1 To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Empirical Sample Risk
- Throws:
java.lang.Exception
- Thrown if the Empirical Sample Risk cannot be computed
-
empiricalRisk
public double empiricalRisk(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.ExceptionDescription copied from interface:EmpiricalLearningMetricEstimator
Compute the Empirical Sample Risk- Parameters:
distRdR1
- R^d R^1 Multivariate MeasurefuncLearnerRdToR1
- The R^d To R^1 Learner FunctiongvviX
- The Validated Predictor InstancegvviY
- The Validated Response Instance- Returns:
- The Empirical Sample Risk
- Throws:
java.lang.Exception
- Thrown if the Empirical Sample Risk cannot be computed
-