Class ApproximateLipschitzLossLearner

java.lang.Object
org.drip.learning.rxtor1.GeneralizedLearner
org.drip.learning.rxtor1.LipschitzLossLearner
org.drip.learning.rxtor1.ApproximateLipschitzLossLearner
All Implemented Interfaces:
EmpiricalLearningMetricEstimator

public class ApproximateLipschitzLossLearner
extends LipschitzLossLearner
ApproximateLipschitzLossLearner implements the Learner Class that holds the Space of Normed Rd To Normed R1 Learning Functions for the Family of Loss Functions that are "approximately" Lipschitz, i.e., loss (ep) - loss (ep') Less Than max (C * |ep-ep'|, C')

The References are:

  • Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform Convergence, and Learnability Journal of Association of Computational Machinery 44 (4) 615-631
  • Anthony, M., and P. L. Bartlett (1999): Artificial Neural Network Learning - Theoretical Foundations Cambridge University Press Cambridge, UK
  • Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): Towards Efficient Agnostic Learning Machine Learning 17 (2) 115-141
  • Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with Squared Loss IEEE Transactions on Information Theory 44 1974-1980
  • Vapnik, V. N. (1998): Statistical learning Theory Wiley New York


Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • ApproximateLipschitzLossLearner

      public ApproximateLipschitzLossLearner​(NormedRxToNormedR1Finite funcClassRxToR1, CoveringNumberLossBound cdpb, RegularizationFunction regularizerFunc, double dblLipschitzSlope, double dblLipschitzFloor) throws java.lang.Exception
      ApproximateLipschitzLossLearner Constructor
      Parameters:
      funcClassRxToR1 - R^x To R^1 Function Class
      cdpb - The Covering Number based Deviation Upper Probability Bound Generator
      regularizerFunc - The Regularizer Function
      dblLipschitzSlope - The Lipschitz Slope Bound
      dblLipschitzFloor - The Lipschitz Floor Bound
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • lipschitzFloor

      public double lipschitzFloor()
      Retrieve the Lipschitz Floor
      Returns:
      The Lipschitz Floor
    • lossSampleCoveringNumber

      public double lossSampleCoveringNumber​(GeneralizedValidatedVector gvvi, double dblEpsilon, boolean bSupremum) throws java.lang.Exception
      Description copied from interface: EmpiricalLearningMetricEstimator
      Retrieve the Loss Class Sample Covering Number - L-Infinity or L-p based Based
      Specified by:
      lossSampleCoveringNumber in interface EmpiricalLearningMetricEstimator
      Overrides:
      lossSampleCoveringNumber in class LipschitzLossLearner
      Parameters:
      gvvi - The Validated Instance Vector Sequence
      dblEpsilon - The Deviation of the Empirical Mean from the Population Mean
      bSupremum - TRUE To Use the Supremum Metric in place of the Built-in Metric
      Returns:
      The Loss Class Sample Covering Number - L-Infinity or L-p based Based
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid