Class L1LossLearner

java.lang.Object
org.drip.learning.rxtor1.GeneralizedLearner
org.drip.learning.rxtor1.L1LossLearner
All Implemented Interfaces:
EmpiricalLearningMetricEstimator

public class L1LossLearner
extends GeneralizedLearner
L1LossLearner implements the Learner Class that holds the Space of Normed Rx To Normed R1 Learning Functions that employs L1 Empirical Loss Routine. Class-Specific Asymptotic Sample, Covering Number based Upper Probability Bounds and other Parameters are also maintained.

The References are:

  • Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform Convergence, and Learnability Journal of Association of Computational Machinery 44 (4) 615-631
  • Anthony, M., and P. L. Bartlett (1999): Artificial Neural Network Learning - Theoretical Foundations Cambridge University Press Cambridge, UK
  • Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): Towards Efficient Agnostic Learning Machine Learning 17 (2) 115-141
  • Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with Squared Loss IEEE Transactions on Information Theory 44 1974-1980
  • Vapnik, V. N. (1998): Statistical learning Theory Wiley New York


Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • L1LossLearner

      public L1LossLearner​(NormedRxToNormedR1Finite funcClassRxToR1, CoveringNumberLossBound cdpb, RegularizationFunction regularizerFunc, MeasureConcentrationExpectationBound cleb) throws java.lang.Exception
      L1LossLearner Constructor
      Parameters:
      funcClassRxToR1 - R^x To R^1 Function Class
      cdpb - The Covering Number based Deviation Upper Probability Bound Generator
      regularizerFunc - The Regularizer Function
      cleb - The Concentration of Measure based Loss Expectation Upper Bound Evaluator
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • concentrationLossBoundEvaluator

      public MeasureConcentrationExpectationBound concentrationLossBoundEvaluator()
      Retrieve the Concentration of Measure based Loss Expectation Upper Bound Evaluator Instance
      Returns:
      The Concentration of Measure based Loss Expectation Upper Bound Evaluator Instance
    • lossSampleCoveringNumber

      public double lossSampleCoveringNumber​(GeneralizedValidatedVector gvvi, double dblEpsilon, boolean bSupremum) throws java.lang.Exception
      Description copied from interface: EmpiricalLearningMetricEstimator
      Retrieve the Loss Class Sample Covering Number - L-Infinity or L-p based Based
      Parameters:
      gvvi - The Validated Instance Vector Sequence
      dblEpsilon - The Deviation of the Empirical Mean from the Population Mean
      bSupremum - TRUE To Use the Supremum Metric in place of the Built-in Metric
      Returns:
      The Loss Class Sample Covering Number - L-Infinity or L-p based Based
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
    • empiricalLoss

      public double empiricalLoss​(R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
      Description copied from interface: EmpiricalLearningMetricEstimator
      Compute the Empirical Sample Loss
      Parameters:
      funcLearnerR1ToR1 - The R^1 To R^1 Learner Function
      gvviX - The Validated Predictor Instance
      gvviY - The Validated Response Instance
      Returns:
      The Empirical Loss
      Throws:
      java.lang.Exception - Thrown if the Empirical Loss cannot be computed
    • empiricalLoss

      public double empiricalLoss​(RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
      Description copied from interface: EmpiricalLearningMetricEstimator
      Compute the Empirical Sample Loss
      Parameters:
      funcLearnerRdToR1 - The R^d To R^1 Learner Function
      gvviX - The Validated Predictor Instance
      gvviY - The Validated Response Instance
      Returns:
      The Empirical Loss
      Throws:
      java.lang.Exception - Thrown if the Empirical Loss cannot be computed
    • empiricalRisk

      public double empiricalRisk​(R1R1 distR1R1, R1ToR1 funcLearnerR1ToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
      Description copied from interface: EmpiricalLearningMetricEstimator
      Compute the Empirical Sample Risk
      Parameters:
      distR1R1 - R^1 R^1 Multivariate Measure
      funcLearnerR1ToR1 - The R^1 To R^1 Learner Function
      gvviX - The Validated Predictor Instance
      gvviY - The Validated Response Instance
      Returns:
      The Empirical Sample Risk
      Throws:
      java.lang.Exception - Thrown if the Empirical Sample Risk cannot be computed
    • empiricalRisk

      public double empiricalRisk​(RdR1 distRdR1, RdToR1 funcLearnerRdToR1, GeneralizedValidatedVector gvviX, GeneralizedValidatedVector gvviY) throws java.lang.Exception
      Description copied from interface: EmpiricalLearningMetricEstimator
      Compute the Empirical Sample Risk
      Parameters:
      distRdR1 - R^d R^1 Multivariate Measure
      funcLearnerRdToR1 - The R^d To R^1 Learner Function
      gvviX - The Validated Predictor Instance
      gvviY - The Validated Response Instance
      Returns:
      The Empirical Sample Risk
      Throws:
      java.lang.Exception - Thrown if the Empirical Sample Risk cannot be computed