Uses of Class
org.drip.measure.bayesian.R1MultivariateConvolutionMetrics
Package | Description |
---|---|
org.drip.measure.bayesian |
Prior, Conditional, Posterior Theil Bayesian
|
org.drip.portfolioconstruction.bayesian |
Black Litterman Bayesian Portfolio Construction
|
-
Uses of R1MultivariateConvolutionMetrics in org.drip.measure.bayesian
Methods in org.drip.measure.bayesian that return R1MultivariateConvolutionMetrics Modifier and Type Method Description static R1MultivariateConvolutionMetrics
TheilMixedEstimationModel. GenerateComposite(ScopingProjectionVariateDistribution spvd, java.lang.String strProjection1, java.lang.String strProjection2, R1MultivariateNormal r1mnUnconditional)
Generate the Combined R^1 Multivariate Normal Distribution from the SPVD and the Named Projectionsstatic R1MultivariateConvolutionMetrics
TheilMixedEstimationModel. GenerateComposite(ScopingProjectionVariateDistribution spvd, java.lang.String strProjection, R1MultivariateNormal r1mnUnconditional)
Generate the Combined R^1 Multivariate Normal Distribution from the SPVD, the NATIVE Projection, and the Named Projectionstatic R1MultivariateConvolutionMetrics
TheilMixedEstimationModel. GenerateComposite(MultivariateMeta meta, ProjectionDistributionLoading pdl1, ProjectionDistributionLoading pdl2, R1MultivariateNormal r1mnUnconditional)
Generate the Joint Mixed Estimation Model Joint/Posterior MetricsR1MultivariateConvolutionMetrics
R1MultivariateConvolutionEngine. process(R1Multivariate rmPrior, R1Multivariate rmUnconditional, R1Multivariate rmConditional)
Generate the Joint R^1 Multivariate Combined DistributionR1MultivariateConvolutionMetrics
R1MultivariateNormalConvolutionEngine. process(R1Multivariate r1mPrior, R1Multivariate r1mUnconditional, R1Multivariate r1mConditional)
-
Uses of R1MultivariateConvolutionMetrics in org.drip.portfolioconstruction.bayesian
Methods in org.drip.portfolioconstruction.bayesian that return R1MultivariateConvolutionMetrics Modifier and Type Method Description R1MultivariateConvolutionMetrics
BlackLittermanCustomConfidenceOutput. jointPosteriorMetrics()
Retrieve the Bayesian Joint/Posterior MetricsConstructors in org.drip.portfolioconstruction.bayesian with parameters of type R1MultivariateConvolutionMetrics Constructor Description BlackLittermanCustomConfidenceOutput(ForwardReverseHoldingsAllocation forwardReverseOptimizationOutput, double[] allocationAdjustmentTiltArray, R1MultivariateConvolutionMetrics jointPosteriorMetrics)
BlackLittermanCustomConfidenceOutput Constructor