Package org.drip.measure.gaussian
Class R1MultivariateNormal
java.lang.Object
org.drip.measure.distribution.RdContinuous
org.drip.measure.state.LabelledRdContinuousDistribution
org.drip.measure.gaussian.R1MultivariateNormal
public class R1MultivariateNormal extends LabelledRdContinuousDistribution
R1MultivariateNormal contains the Generalized Joint Multivariate R1 Normal
Distributions. It provides the following Functionality:
- Construct a Standard R1MultivariateNormal Instance #1
- Construct a Standard R1MultivariateNormal Instance #2
- R1MultivariateNormal Constructor
- Compute the Co-variance of the Distribution
- Compute the Density under the Distribution at the given Variate Array
- Compute the Mean of the Distribution
- Compute the Variance of the Distribution
| Module | Computational Core Module |
| Library | Numerical Analysis Library |
| Project | Rd Continuous/Discrete Probability Measures |
| Package | R1 Covariant Gaussian Quadrature |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1MultivariateNormal(LabelledRd metaRd, double[] meanArray, JointVariance jointVariance)R1MultivariateNormal Constructor -
Method Summary
Modifier and Type Method Description JointVariancecovariance()Compute the Co-variance of the Distributiondoubledensity(double[] variateArray)Compute the Density under the Distribution at the given Variate Arraydouble[]mean()Compute the Mean of the Distributionstatic R1MultivariateNormalStandard(java.lang.String[] variateIDArray, double[] meanArray, double[][] covarianceMatrix)Construct a Standard R1MultivariateNormal Instance #2static R1MultivariateNormalStandard(LabelledRd metaRd, double[] meanArray, double[][] covarianceMatrix)Construct a Standard R1MultivariateNormal Instance #1double[]variance()Compute the Variance of the DistributionMethods inherited from class org.drip.measure.state.LabelledRdContinuousDistribution
cumulative, densityRdToR1, dimension, expectation, incremental, leftEdgeArray, momentGeneratingFunction, rightEdgeArray, stateLabelsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1MultivariateNormal
public R1MultivariateNormal(LabelledRd metaRd, double[] meanArray, JointVariance jointVariance) throws java.lang.ExceptionR1MultivariateNormal Constructor- Parameters:
metaRd- The R1 Multivariate Meta HeadersmeanArray- Array of the Univariate MeansjointVariance- The Multivariate Covariance- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
Standard
public static final R1MultivariateNormal Standard(LabelledRd metaRd, double[] meanArray, double[][] covarianceMatrix)Construct a Standard R1MultivariateNormal Instance #1- Parameters:
metaRd- The R1 Multivariate Meta HeadersmeanArray- Array of the Univariate MeanscovarianceMatrix- The Covariance Matrix- Returns:
- The Standard Normal Univariate Distribution
-
Standard
public static final R1MultivariateNormal Standard(java.lang.String[] variateIDArray, double[] meanArray, double[][] covarianceMatrix)Construct a Standard R1MultivariateNormal Instance #2- Parameters:
variateIDArray- Array of Variate IDsmeanArray- Array of the Univariate MeanscovarianceMatrix- The Covariance Matrix- Returns:
- The Standard Normal Univariate Distribution
-
covariance
Compute the Co-variance of the Distribution- Returns:
- The Co-variance of the Distribution
-
density
public double density(double[] variateArray) throws java.lang.ExceptionCompute the Density under the Distribution at the given Variate Array- Specified by:
densityin classRdContinuous- Parameters:
variateArray- Variate Array at which the Density needs to be computed- Returns:
- The Density
- Throws:
java.lang.Exception- Thrown if the input is invalid
-
mean
public double[] mean()Compute the Mean of the Distribution- Overrides:
meanin classLabelledRdContinuousDistribution- Returns:
- The Mean of the Distribution
-
variance
public double[] variance()Compute the Variance of the Distribution- Overrides:
variancein classLabelledRdContinuousDistribution- Returns:
- The Variance of the Distribution
-