Package org.drip.measure.chisquare
Class R1CentralFisherProxy
java.lang.Object
org.drip.measure.continuous.R1Univariate
org.drip.measure.chisquare.R1CentralFisherProxy
public class R1CentralFisherProxy extends R1Univariate
R1CentralFisherProxy implements the Univariate Normal Proxy Version using the Fisher Transformation
for the R1 Chi-Square Distribution. The References are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Backstrom, T., and J. Fischer (2018): Fast Randomization for Distributed Low Bit-rate Coding of Speech and Audio IEEE/ACM Transactions on Audio, Speech, and Language Processing 26 (1) 19-30
- Chi-Squared Distribution (2019): Chi-Squared Function https://en.wikipedia.org/wiki/Chi-squared_distribution
- Johnson, N. L., S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions 2nd Edition John Wiley and Sons
- National Institute of Standards and Technology (2019): Chi-Squared Distribution https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd Continuous/Discrete Probability Measures
- Package = Chi-Square Distribution Implementation/Properties
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1CentralFisherProxy(int degreesOfFreedom)R1CentralFisherProxy Constructor -
Method Summary
Modifier and Type Method Description doublecumulative(double t)Compute the cumulative under the distribution to the given valueintdegreesOfFreedom()Retrieve the Degrees of Freedomdoubledensity(double t)Compute the Density under the Distribution at the given VariatedoubledifferentialEntropy()Retrieve the Differential Entropy of the DistributiondoubleexcessKurtosis()Retrieve the Excess Kurtosis of the Distributiondoublemean()Retrieve the Mean of the Distributiondoublemedian()Retrieve the Median of the Distributiondoublemode()Retrieve the Mode of the DistributionR1ToR1momentGeneratingFunction()Construct the Moment Generating FunctionR1ToR1probabilityGeneratingFunction()Construct the Probability Generating FunctionR1UnivariateNormalr1UnivariateNormal()Retrieve the R^1 Univariate Normaldoublerandom()Generate a Random Variable corresponding to the Distributiondoubleskewness()Retrieve the Skewness of the Distributiondouble[]support()Lay out the Support of the PDF Rangedoublevariance()Retrieve the Variance of the DistributionMethods inherited from class org.drip.measure.continuous.R1Univariate
bPOE, centralMoment, cvar, expectedShortfall, fisherInformation, histogram, incremental, invCumulative, iqr, kullbackLeiblerDivergence, nonCentralMoment, populationCentralMeasures, quantile, randomArray, supported, tukeyAnomaly, tukeyCriterionMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1CentralFisherProxy
public R1CentralFisherProxy(int degreesOfFreedom) throws java.lang.ExceptionR1CentralFisherProxy Constructor- Parameters:
degreesOfFreedom- Degrees of Freedom- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
degreesOfFreedom
public int degreesOfFreedom()Retrieve the Degrees of Freedom- Returns:
- The Degrees of Freedom
-
r1UnivariateNormal
Retrieve the R^1 Univariate Normal- Returns:
- The R^1 Univariate Normal
-
support
public double[] support()Description copied from class:R1UnivariateLay out the Support of the PDF Range- Specified by:
supportin classR1Univariate- Returns:
- Support of the PDF Range
-
density
public double density(double t) throws java.lang.ExceptionDescription copied from class:R1UnivariateCompute the Density under the Distribution at the given Variate- Specified by:
densityin classR1Univariate- Parameters:
t- Variate at which the Density needs to be computed- Returns:
- The Density
- Throws:
java.lang.Exception- Thrown if the input is invalid
-
cumulative
public double cumulative(double t) throws java.lang.ExceptionDescription copied from class:R1UnivariateCompute the cumulative under the distribution to the given value- Specified by:
cumulativein classR1Univariate- Parameters:
t- Variate to which the cumulative is to be computed- Returns:
- The cumulative
- Throws:
java.lang.Exception- Thrown if the inputs are invalid
-
mean
public double mean() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Mean of the Distribution- Specified by:
meanin classR1Univariate- Returns:
- The Mean of the Distribution
- Throws:
java.lang.Exception- Thrown if the Mean cannot be estimated
-
median
public double median() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Median of the Distribution- Overrides:
medianin classR1Univariate- Returns:
- The Median of the Distribution
- Throws:
java.lang.Exception- Thrown if the Median cannot be estimated
-
mode
public double mode() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Mode of the Distribution- Overrides:
modein classR1Univariate- Returns:
- The Mode of the Distribution
- Throws:
java.lang.Exception- Thrown if the Mode cannot be estimated
-
variance
public double variance() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Variance of the Distribution- Specified by:
variancein classR1Univariate- Returns:
- The Variance of the Distribution
- Throws:
java.lang.Exception- Thrown if the Variance cannot be estimated
-
skewness
public double skewness() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Skewness of the Distribution- Overrides:
skewnessin classR1Univariate- Returns:
- The Skewness of the Distribution
- Throws:
java.lang.Exception- Thrown if the Skewness cannot be estimated
-
excessKurtosis
public double excessKurtosis() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Excess Kurtosis of the Distribution- Overrides:
excessKurtosisin classR1Univariate- Returns:
- The Excess Kurtosis of the Distribution
- Throws:
java.lang.Exception- Thrown if the Skewness cannot be estimated
-
differentialEntropy
public double differentialEntropy() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Differential Entropy of the Distribution- Overrides:
differentialEntropyin classR1Univariate- Returns:
- The Differential Entropy of the Distribution
- Throws:
java.lang.Exception- Thrown if the Entropy cannot be estimated
-
momentGeneratingFunction
Description copied from class:R1UnivariateConstruct the Moment Generating Function- Overrides:
momentGeneratingFunctionin classR1Univariate- Returns:
- The Moment Generating Function
-
probabilityGeneratingFunction
Description copied from class:R1UnivariateConstruct the Probability Generating Function- Overrides:
probabilityGeneratingFunctionin classR1Univariate- Returns:
- The Probability Generating Function
-
random
public double random() throws java.lang.ExceptionDescription copied from class:R1UnivariateGenerate a Random Variable corresponding to the Distribution- Overrides:
randomin classR1Univariate- Returns:
- Random Variable corresponding to the Distribution
- Throws:
java.lang.Exception- Thrown if the Random Instance cannot be estimated
-