Class ErlangDistribution

java.lang.Object

public class ErlangDistribution
extends R1ShapeScaleDistribution
ErlangDistribution implements the Shape and Scale Parameterization of the R1 Erlang Distribution. The References are:

  • Devroye, L. (1986): Non-Uniform Random Variate Generation Springer-Verlag New York
  • Gamma Distribution (2019): Gamma Distribution https://en.wikipedia.org/wiki/Chi-squared_distribution
  • Louzada, F., P. L. Ramos, and E. Ramos (2019): A Note on Bias of Closed-Form Estimators for the Gamma Distribution Derived From Likelihood Equations The American Statistician 73 (2) 195-199
  • Minka, T. (2002): Estimating a Gamma distribution https://tminka.github.io/papers/minka-gamma.pdf
  • Ye, Z. S., and N. Chen (2017): Closed-Form Estimators for the Gamma Distribution Derived from Likelihood Equations The American Statistician 71 (2) 177-181


Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • ErlangDistribution

      public ErlangDistribution​(int shapeParameter, double scaleParameter, R1ToR1 gammaEstimator, R1ToR1 digammaEstimator, R2ToR1 lowerIncompleteGammaEstimator) throws java.lang.Exception
      ErlangDistribution Constructor
      Parameters:
      shapeParameter - Shape Parameter
      scaleParameter - Scale Parameter
      gammaEstimator - Gamma Estimator
      digammaEstimator - Digamma Estimator
      lowerIncompleteGammaEstimator - Lower Incomplete Gamma Estimator
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • cumulative

      public double cumulative​(double x) throws java.lang.Exception
      Description copied from class: R1Univariate
      Compute the cumulative under the distribution to the given value
      Overrides:
      cumulative in class R1ShapeScaleDistribution
      Parameters:
      x - Variate to which the cumulative is to be computed
      Returns:
      The cumulative
      Throws:
      java.lang.Exception - Thrown if the inputs are invalid
    • waitingTime

      public double waitingTime()
      Compute the kth Arrival Poisson Waiting Time
      Returns:
      The kth Arrival Poisson Waiting Time