Package org.drip.function.definition
Interface R2ToR1
- All Known Implementing Classes:
BesselFirstKindEstimator,BesselFirstKindLaurentExpansion,BesselSecondKindEstimator,BetaEstimator,FirstFrobeniusSeriesEstimator,FirstSchlafliIntegralEstimator,IntegrandEstimator,LogGammaEstimator,ModifiedBesselFirstKindEstimator,ModifiedBesselSecondKindEstimator,ModifiedFirstFrobeniusSeriesEstimator,ModifiedFirstHankelAsymptoteEstimator,ModifiedFirstIntegralEstimator,ModifiedSecondEstimator,ModifiedSecondHankelAsymptoteEstimator,ModifiedSecondIntegralEstimator,R1ProbabilityDensityFunction,R1ProbabilityDensityFunctionCIR,R1ToR1Drift,R1ToR1Volatility,R1WhiteThermalFrictionalNoise,R2ToR1Estimator,RiccatiBesselCEstimator,RiccatiBesselSEstimator,RiccatiCEstimator,RiccatiSEstimator,SecondNISTSeriesEstimator,SecondWatsonIntegralEstimator,SecondWeberEstimator,SeriesExpansion,SphericalBesselFirstKindEstimator,SphericalBesselFirstKindExpansion,SphericalBesselSecondKindEstimator,SphericalBesselSecondKindExpansion,SphericalFirstEstimator,SphericalSecondEstimator,SummationSeriesEstimator
public interface R2ToR1
R2ToR1 provides the Evaluation of the Objective Function and its derivatives for a specified
variate Pair. Default Implementation of the Derivatives are for Non-analytical Black Box Objective
Functions.
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Davis, P. J. (1959): Leonhard Euler's Integral: A Historical Profile of the Gamma Function American Mathematical Monthly 66 (10) 849-869
- Whitaker, E. T., and G. N. Watson (1996): A Course on Modern Analysis Cambridge University Press New York
- Wikipedia (2019): Beta Function https://en.wikipedia.org/wiki/Beta_function
- Wikipedia (2019): Gamma Function https://en.wikipedia.org/wiki/Gamma_function
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd To Rd Function Analysis
- Package = Function Implementation Ancillary Support Objects
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description doubleevaluate(double x, double y)Evaluate for the given variate Pair
-
Method Details
-
evaluate
double evaluate(double x, double y) throws java.lang.ExceptionEvaluate for the given variate Pair- Parameters:
x- Xy- Y- Returns:
- Returns the calculated value
- Throws:
java.lang.Exception- Thrown if evaluation cannot be done
-