Package org.drip.specialfunction.beta
Class IntegrandEstimator
java.lang.Object
org.drip.specialfunction.definition.BetaEstimator
org.drip.specialfunction.beta.IntegrandEstimator
- All Implemented Interfaces:
R2ToR1
public abstract class IntegrandEstimator extends BetaEstimator
IntegrandEstimator implements the Beta Function using Integrand Estimation Schemes. The References
are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Davis, P. J. (1959): Leonhard Euler's Integral: A Historical Profile of the Gamma Function American Mathematical Monthly 66 (10) 849-869
- Whitaker, E. T., and G. N. Watson (1996): A Course on Modern Analysis Cambridge University Press New York
- Wikipedia (2019): Beta Function https://en.wikipedia.org/wiki/Beta_function
- Wikipedia (2019): Gamma Function https://en.wikipedia.org/wiki/Gamma_function
- Construct the Beta Estimator from the Trigonometric Integral
- Construct the Beta Estimator from the Euler Integral of the First Kind
- Construct the Beta Estimator from the Euler Integral of the First Kind Exponent N
- Construct the Beta Estimator from the Euler Integral of the First Kind over the Right Half Plane
- Retrieve the Quadrature Count
Module | Product Core Module |
Library | Fixed Income Analytics |
Project | Special Function Implementation and Analysis |
Package | Estimation Techniques for Beta Function |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description static IntegrandEstimator
EulerFirst(int quadratureCount)
Construct the Beta Estimator from the Euler Integral of the First Kindstatic IntegrandEstimator
EulerFirstN(int quadratureCount, double exponent)
Construct the Beta Estimator from the Euler Integral of the First Kind Exponent Nstatic IntegrandEstimator
EulerFirstRightPlane(int quadratureCount)
Construct the Beta Estimator from the Euler Integral of the First Kind over the Right Half Planeint
quadratureCount()
Retrieve the Quadrature Countstatic IntegrandEstimator
Trigonometric(int quadratureCount)
Construct the Beta Estimator from the Trigonometric IntegralMethods inherited from class org.drip.specialfunction.definition.BetaEstimator
beta, jacobian
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
Trigonometric
Construct the Beta Estimator from the Trigonometric Integral- Parameters:
quadratureCount
- Count of the Integrand Quadrature- Returns:
- Beta Estimator from the Trigonometric Integral
-
EulerFirst
Construct the Beta Estimator from the Euler Integral of the First Kind- Parameters:
quadratureCount
- Count of the Integrand Quadrature- Returns:
- Beta Estimator from the Euler Integral of the First Kind
-
EulerFirstN
Construct the Beta Estimator from the Euler Integral of the First Kind Exponent N- Parameters:
quadratureCount
- Count of the Integrand Quadratureexponent
- Exponent- Returns:
- Beta Estimator from the Euler Integral of the First Kind
-
EulerFirstRightPlane
Construct the Beta Estimator from the Euler Integral of the First Kind over the Right Half Plane- Parameters:
quadratureCount
- Count of the Integrand Quadrature- Returns:
- Beta Estimator from the Euler Integral of the First Kind over the Right Half Plane
-
quadratureCount
public int quadratureCount()Retrieve the Quadrature Count- Returns:
- The Quadrature Count
-