Class SphericalBesselSecondKindEstimator
java.lang.Object
org.drip.specialfunction.definition.SphericalBesselSecondKindEstimator
- All Implemented Interfaces:
R2ToR1
- Direct Known Subclasses:
SphericalSecondEstimator
public abstract class SphericalBesselSecondKindEstimator extends java.lang.Object implements R2ToR1
SphericalBesselSecondKindEstimator exposes the Estimator for the Spherical Bessel Function of the
Second Kind. The References are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Arfken, G. B., and H. J. Weber (2005): Mathematical Methods for Physicists 6th Edition Harcourt San Diego
- Temme N. M. (1996): Special Functions: An Introduction to the Classical Functions of Mathematical Physics 2nd Edition Wiley New York
- Watson, G. N. (1995): A Treatise on the Theory of Bessel Functions Cambridge University Press
- Wikipedia (2019): Bessel Function https://en.wikipedia.org/wiki/Bessel_function
- Evaluate Spherical Bessel Function Second Kind y given Alpha and z
Module | Product Core Module |
Library | Fixed Income Analytics |
Project | Special Function Implementation and Analysis |
Package | Definition of Special Function Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description SphericalBesselSecondKindEstimator()
-
Method Summary
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
SphericalBesselSecondKindEstimator
public SphericalBesselSecondKindEstimator()
-
-
Method Details
-
smallY
public abstract double smallY(double alpha, double z) throws java.lang.ExceptionEvaluate Spherical Bessel Function Second Kind y given Alpha and z- Parameters:
alpha
- Alphaz
- Z- Returns:
- Spherical Bessel Function Second Kind y Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
evaluate
public double evaluate(double alpha, double z) throws java.lang.ExceptionDescription copied from interface:R2ToR1
Evaluate for the given variate Pair
-