Class BesselSecondKindEstimator
java.lang.Object
org.drip.specialfunction.definition.BesselSecondKindEstimator
- All Implemented Interfaces:
R2ToR1
- Direct Known Subclasses:
SecondNISTSeriesEstimator
,SecondWatsonIntegralEstimator
,SecondWeberEstimator
public abstract class BesselSecondKindEstimator extends java.lang.Object implements R2ToR1
BesselSecondKindEstimator exposes the Estimator for the Bessel Function of the Second Kind. The
References are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Arfken, G. B., and H. J. Weber (2005): Mathematical Methods for Physicists 6th Edition Harcourt San Diego
- Temme N. M. (1996): Special Functions: An Introduction to the Classical Functions of Mathematical Physics 2nd Edition Wiley New York
- Watson, G. N. (1995): A Treatise on the Theory of Bessel Functions Cambridge University Press
- Wikipedia (2019): Bessel Function https://en.wikipedia.org/wiki/Bessel_function
- Construct the Alpha Zero Asymptotic Version of BesselSecondKindEstimator
- Construct the Alpha Non-Negative Integer Asymptotic Version of BesselSecondKindEstimator
- Construct the Alpha Negative Integer Asymptotic Version of BesselSecondKindEstimator
- Construct the High z Asymptotic Version of BesselSecondKindEstimator
- Evaluate Bessel Function Second Kind Y given Alpha and z
Module | Product Core Module |
Library | Fixed Income Analytics |
Project | Special Function Implementation and Analysis |
Package | Definition of Special Function Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description BesselSecondKindEstimator()
-
Method Summary
Modifier and Type Method Description static BesselSecondKindEstimator
AlphaNegativeIntegerAsymptote(R1ToR1 gammaEstimator)
Construct the Alpha Negative Integer Asymptotic Version of BesselSecondKindEstimatorstatic BesselSecondKindEstimator
AlphaNonNegativeIntegerAsymptote(R1ToR1 gammaEstimator)
Construct the Alpha Non-Negative Integer Asymptotic Version of BesselSecondKindEstimatorstatic BesselSecondKindEstimator
AlphaZeroAsymptote()
Construct the Alpha Zero Asymptotic Version of BesselSecondKindEstimatorabstract double
bigY(double alpha, double z)
Evaluate Bessel Function Second Kind Y given Alpha and zdouble
evaluate(double alpha, double z)
Evaluate for the given variate Pairstatic BesselSecondKindEstimator
HighZAsymptote()
Construct the High z Asymptotic Version of BesselSecondKindEstimatorMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
BesselSecondKindEstimator
public BesselSecondKindEstimator()
-
-
Method Details
-
AlphaZeroAsymptote
Construct the Alpha Zero Asymptotic Version of BesselSecondKindEstimator- Returns:
- Alpha Zero Asymptotic Version of BesselSecondKindEstimator
-
AlphaNonNegativeIntegerAsymptote
public static final BesselSecondKindEstimator AlphaNonNegativeIntegerAsymptote(R1ToR1 gammaEstimator)Construct the Alpha Non-Negative Integer Asymptotic Version of BesselSecondKindEstimator- Parameters:
gammaEstimator
- Gamma Estimator- Returns:
- Alpha Non-Negative Integer Asymptotic Version of BesselSecondKindEstimator
-
AlphaNegativeIntegerAsymptote
Construct the Alpha Negative Integer Asymptotic Version of BesselSecondKindEstimator- Parameters:
gammaEstimator
- Gamma Estimator- Returns:
- Alpha Negative Integer Asymptotic Version of BesselSecondKindEstimator
-
HighZAsymptote
Construct the High z Asymptotic Version of BesselSecondKindEstimator- Returns:
- High z Asymptotic Version of BesselSecondKindEstimator
-
bigY
public abstract double bigY(double alpha, double z) throws java.lang.ExceptionEvaluate Bessel Function Second Kind Y given Alpha and z- Parameters:
alpha
- Alphaz
- Z- Returns:
- Bessel Function Second Kind Y Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
evaluate
public double evaluate(double alpha, double z) throws java.lang.ExceptionDescription copied from interface:R2ToR1
Evaluate for the given variate Pair
-