Package org.drip.specialfunction.beta
Class SummationSeriesEstimator
java.lang.Object
org.drip.specialfunction.definition.BetaEstimator
org.drip.specialfunction.beta.SummationSeriesEstimator
- All Implemented Interfaces:
R2ToR1
public abstract class SummationSeriesEstimator extends BetaEstimator
SummationSeriesEstimator implements the Summation Series Based Beta Estimation. The References are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Davis, P. J. (1959): Leonhard Euler's Integral: A Historical Profile of the Gamma Function American Mathematical Monthly 66 (10) 849-869
- Whitaker, E. T., and G. N. Watson (1996): A Course on Modern Analysis Cambridge University Press New York
- Wikipedia (2019): Beta Function https://en.wikipedia.org/wiki/Beta_function
- Wikipedia (2019): Gamma Function https://en.wikipedia.org/wiki/Gamma_function
- Compute the Abramowitz-Stegun (2007) Summation Series of Beta Estimator
- Retrieve the Underlying Summation Series
| Module | Product Core Module |
| Library | Fixed Income Analytics |
| Project | Special Function Implementation and Analysis |
| Package | Estimation Techniques for Beta Function |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description static SummationSeriesEstimatorAbramowitzStegun2007(int termCount)Compute the Abramowitz-Stegun (2007) Summation Series of Beta EstimatorR2ToR1SeriessummationSeries()Retrieve the Underlying Summation SeriesMethods inherited from class org.drip.specialfunction.definition.BetaEstimator
beta, jacobianMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
AbramowitzStegun2007
Compute the Abramowitz-Stegun (2007) Summation Series of Beta Estimator- Parameters:
termCount- Number of Terms in the Estimation- Returns:
- The Abramowitz-Stegun (2007) Summation Series of Beta Estimator
-
summationSeries
Retrieve the Underlying Summation Series- Returns:
- The Underlying Summation Series
-