Package org.drip.measure.statistics
Class UnivariateMoments
java.lang.Object
org.drip.measure.statistics.UnivariateMoments
public class UnivariateMoments
extends java.lang.Object
UnivariateMoments generates and holds the Specified Univariate Series Mean, Variance, and a few
selected Moments.
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd Continuous/Discrete Probability Measures
- Package = R1 Rd Thin Thick Moments
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description intdegreesOfFreedom()Retrieve the Degrees of Freedomdoublemean()Retrieve the Series Meanjava.util.Map<java.lang.Integer,java.lang.Double>momentMap()Retrieve the Moments Mapjava.lang.Stringname()Retrieve the Series NameintnumSample()Retrieve the Number of SamplesdoublepredictiveConfidenceLevel()Compute the Predictive Confidence Levelstatic UnivariateMomentsStandard(java.lang.String strName, double[] adblEntry)Construct a UnivariateMoments Instance for the specified Seriesstatic UnivariateMomentsStandard(java.lang.String strName, double[] adblEntry, int[] aiMoment)Construct a UnivariateMoments Instance for the specified SeriesdoublestandardErrorOffset(double x)Estimate the Offset in Terms of the NUmber of Standard ErrorsdoublestdDev()Retrieve the Series Standard DeviationdoublestdError()Retrieve the Series Standard ErrordoubletStatistic()Compute the Series t-Statistic for Hypothesis Pivot = 0 (e.g., the False Positive NULL Hypothesis for for Homoscedastic Univariate Linear Regression)doubletStatistic(double hypothesisPivot)Compute the Series t-Statistic around the Series Hypothesis Pivotdoublevariance()Retrieve the Series VarianceMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
Standard
public static final UnivariateMoments Standard(java.lang.String strName, double[] adblEntry, int[] aiMoment)Construct a UnivariateMoments Instance for the specified Series- Parameters:
strName- Series NameadblEntry- Series EntryaiMoment- Array of Moments to be Calculated- Returns:
- The UnivariateMoments Instance
-
Standard
Construct a UnivariateMoments Instance for the specified Series- Parameters:
strName- Series NameadblEntry- Series Entry- Returns:
- The UnivariateMoments Instance
-
name
public java.lang.String name()Retrieve the Series Name- Returns:
- The Series Name
-
numSample
public int numSample()Retrieve the Number of Samples- Returns:
- The Number of Samples
-
mean
public double mean()Retrieve the Series Mean- Returns:
- The Series Mean
-
variance
public double variance()Retrieve the Series Variance- Returns:
- The Series Variance
-
stdDev
public double stdDev()Retrieve the Series Standard Deviation- Returns:
- The Series Standard Deviation
-
stdError
public double stdError()Retrieve the Series Standard Error- Returns:
- The Series Standard Error
-
momentMap
public java.util.Map<java.lang.Integer,java.lang.Double> momentMap()Retrieve the Moments Map- Returns:
- The Map of Moments
-
tStatistic
public double tStatistic(double hypothesisPivot) throws java.lang.ExceptionCompute the Series t-Statistic around the Series Hypothesis Pivot- Parameters:
hypothesisPivot- The Series Hypothesis Pivot- Returns:
- The Series t-Statistic around the Series Hypothesis Pivot
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
tStatistic
public double tStatistic() throws java.lang.ExceptionCompute the Series t-Statistic for Hypothesis Pivot = 0 (e.g., the False Positive NULL Hypothesis for for Homoscedastic Univariate Linear Regression)- Returns:
- The Series t-Statistic
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
standardErrorOffset
public double standardErrorOffset(double x) throws java.lang.ExceptionEstimate the Offset in Terms of the NUmber of Standard Errors- Parameters:
x- The Observation Point- Returns:
- The Offset in Terms of the NUmber of Standard Errors
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
degreesOfFreedom
public int degreesOfFreedom()Retrieve the Degrees of Freedom- Returns:
- The Degrees of Freedom
-
predictiveConfidenceLevel
public double predictiveConfidenceLevel()Compute the Predictive Confidence Level- Returns:
- The Predictive Confidence Level
-