Package org.drip.measure.statistics
Class UnivariateMoments
java.lang.Object
org.drip.measure.statistics.UnivariateMoments
public class UnivariateMoments
extends java.lang.Object
UnivariateMoments generates and holds the Specified Univariate Series Mean, Variance, and a few
selected Moments.
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd Continuous/Discrete Probability Measures
- Package = R1 Rd Thin Thick Moments
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description int
degreesOfFreedom()
Retrieve the Degrees of Freedomdouble
mean()
Retrieve the Series Meanjava.util.Map<java.lang.Integer,java.lang.Double>
momentMap()
Retrieve the Moments Mapjava.lang.String
name()
Retrieve the Series Nameint
numSample()
Retrieve the Number of Samplesdouble
predictiveConfidenceLevel()
Compute the Predictive Confidence Levelstatic UnivariateMoments
Standard(java.lang.String strName, double[] adblEntry)
Construct a UnivariateMoments Instance for the specified Seriesstatic UnivariateMoments
Standard(java.lang.String strName, double[] adblEntry, int[] aiMoment)
Construct a UnivariateMoments Instance for the specified Seriesdouble
standardErrorOffset(double x)
Estimate the Offset in Terms of the NUmber of Standard Errorsdouble
stdDev()
Retrieve the Series Standard Deviationdouble
stdError()
Retrieve the Series Standard Errordouble
tStatistic()
Compute the Series t-Statistic for Hypothesis Pivot = 0 (e.g., the False Positive NULL Hypothesis for for Homoscedastic Univariate Linear Regression)double
tStatistic(double hypothesisPivot)
Compute the Series t-Statistic around the Series Hypothesis Pivotdouble
variance()
Retrieve the Series VarianceMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
Standard
public static final UnivariateMoments Standard(java.lang.String strName, double[] adblEntry, int[] aiMoment)Construct a UnivariateMoments Instance for the specified Series- Parameters:
strName
- Series NameadblEntry
- Series EntryaiMoment
- Array of Moments to be Calculated- Returns:
- The UnivariateMoments Instance
-
Standard
Construct a UnivariateMoments Instance for the specified Series- Parameters:
strName
- Series NameadblEntry
- Series Entry- Returns:
- The UnivariateMoments Instance
-
name
public java.lang.String name()Retrieve the Series Name- Returns:
- The Series Name
-
numSample
public int numSample()Retrieve the Number of Samples- Returns:
- The Number of Samples
-
mean
public double mean()Retrieve the Series Mean- Returns:
- The Series Mean
-
variance
public double variance()Retrieve the Series Variance- Returns:
- The Series Variance
-
stdDev
public double stdDev()Retrieve the Series Standard Deviation- Returns:
- The Series Standard Deviation
-
stdError
public double stdError()Retrieve the Series Standard Error- Returns:
- The Series Standard Error
-
momentMap
public java.util.Map<java.lang.Integer,java.lang.Double> momentMap()Retrieve the Moments Map- Returns:
- The Map of Moments
-
tStatistic
public double tStatistic(double hypothesisPivot) throws java.lang.ExceptionCompute the Series t-Statistic around the Series Hypothesis Pivot- Parameters:
hypothesisPivot
- The Series Hypothesis Pivot- Returns:
- The Series t-Statistic around the Series Hypothesis Pivot
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
tStatistic
public double tStatistic() throws java.lang.ExceptionCompute the Series t-Statistic for Hypothesis Pivot = 0 (e.g., the False Positive NULL Hypothesis for for Homoscedastic Univariate Linear Regression)- Returns:
- The Series t-Statistic
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
standardErrorOffset
public double standardErrorOffset(double x) throws java.lang.ExceptionEstimate the Offset in Terms of the NUmber of Standard Errors- Parameters:
x
- The Observation Point- Returns:
- The Offset in Terms of the NUmber of Standard Errors
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
degreesOfFreedom
public int degreesOfFreedom()Retrieve the Degrees of Freedom- Returns:
- The Degrees of Freedom
-
predictiveConfidenceLevel
public double predictiveConfidenceLevel()Compute the Predictive Confidence Level- Returns:
- The Predictive Confidence Level
-