Package org.drip.numerical.complex
Class C1Square
java.lang.Object
org.drip.numerical.complex.C1Square
- Direct Known Subclasses:
C1CartesianFuhrRzeszotnik
,C1CartesianPhiAB
,C1CartesianPhiAlphaBetaTheta
,C1CartesianPhiPsiThetaDelta
,UnitaryMatrix
public class C1Square
extends java.lang.Object
C1Square implements the type and Functionality associated with a C1Square Matrix. The
References are:
- Fuhr, H., and Z. Rzeszotnik (2018): A Note on Factoring Unitary Matrices Linear Algebra and its Applications 547 32-44
- Horn, R. A., and C. R. Johnson (2013): Matrix Analysis Cambridge University Press Cambridge UK
- Li, C. K., and E. Poon (2002): Additive Decomposition of Real Matrices Linear and Multilinear Algebra 50 (4) 321-326
- Marvian, I. (2022): Restrictions on realizable Unitary Operations imposed by Symmetry and Locality Nature Science 18 (3) 283-289
- Wikipedia (2024): Unitary Matrix https://en.wikipedia.org/wiki/Unitary_matrix
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities
- Package = Implementation of Complex Number Suite
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description C1Cartesian[][]
c1Grid()
Retrieve C1 Arraydouble
determinant()
Determinant of with the "Other"boolean
isUnitary()
Indicate if the Determinant is 1boolean
isUnitDeterminant()
Indicate if the Determinant is 1C1Square
product(C1Cartesian c1)
Compute the Product of the Input Matrix and the Complex NumberC1Square
product(C1Square squareMatrixOther)
Compute the Product with the other Square MatrixC1Square
product(R1Square r1Square)
Compute the Product with the other Square Matrixstatic C1Square
Rotation2x2(double theta)
Construct a 2x2 Rotation C1 Matrixstatic C1Square
Rotation2x2(double theta1, double theta2)
Construct a 2x2 Rotation C1 Matrixint
size()
Retrieve the Size of the Square MatrixC1Square
slimContract()
Contract the Square C1Cartesian by one Row/Columnstatic C1Square
Standard(C1Cartesian[][] c1Grid)
Construct a Standard Instance of C1SquareC1Cartesian[][]
transpose()
Transpose the Square MatrixMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
Standard
Construct a Standard Instance of C1Square- Parameters:
c1Grid
- Grid of C1Cartesian Elements- Returns:
- C1Square Instance
-
Rotation2x2
Construct a 2x2 Rotation C1 Matrix- Parameters:
theta
- The Rotation Angle- Returns:
- 2x2 Rotation C1 Matrix
-
Rotation2x2
Construct a 2x2 Rotation C1 Matrix- Parameters:
theta1
- The Left Rotation Angletheta2
- The Right Rotation Angle- Returns:
- 2x2 Rotation C1 Matrix
-
c1Grid
Retrieve C1 Array- Returns:
- C1 Array
-
size
public int size()Retrieve the Size of the Square Matrix- Returns:
- Size of the Square Matrix
-
product
Compute the Product with the other Square Matrix- Parameters:
squareMatrixOther
- "Other" Square Matrix- Returns:
- Resulting Product
-
transpose
Transpose the Square Matrix- Returns:
- The Transpose of the Matrix Grid
-
slimContract
Contract the Square C1Cartesian by one Row/Column- Returns:
- New C1Square
-
determinant
public double determinant()Determinant of with the "Other"- Returns:
- The Determinant
-
isUnitDeterminant
public boolean isUnitDeterminant()Indicate if the Determinant is 1- Returns:
- TRUE - Determinant is 1
-
isUnitary
public boolean isUnitary()Indicate if the Determinant is 1- Returns:
- TRUE - Determinant is 1
-
product
Compute the Product with the other Square Matrix- Parameters:
r1Square
- R1 Square Matrix- Returns:
- Resulting Product
-
product
Compute the Product of the Input Matrix and the Complex Number- Parameters:
c1
- C1- Returns:
- The Product C1Square
-