Package org.drip.numerical.decomposition
Class JordanNormalVJ
java.lang.Object
org.drip.numerical.decomposition.JordanNormalVJ
public class JordanNormalVJ
extends java.lang.Object
JordanNormalVJ holds the V and the J components of the Jordan Normal Form Matrix. The References
are:
- Dunford, N., and J. Schwartz (1963): Linear Operators II: Spectral Theory: Self-adjoint Operators in the Hilbert Space Wiley Interscience Hoboken NJ
- Gradshteyn, I. S., I. M. Ryzhik, Y. V. Geronimus, M. Y. Tseytlin, and A. Jeffrey (2015): Tables of Integrals, Series, and Products Academic Press Cambridge MA
- Guo, J. M., Z. W. Wang, and X. Li (2019): Sharp Upper Bounds of the Spectral Radius of a Graph Discrete Mathematics 342 (9) 2559-2563
- Lax, P. D. (2002): Functional Analysis Wiley Interscience Hoboken NJ
- Wikipedia (2024): Spectral Radius https://en.wikipedia.org/wiki/Spectral_radius
- Module = Computational Core Module
- Library = Graph Algorithm Library
- Project = Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities
- Package = Jordan Normal, UV, and QR Decompositions
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description JordanNormalVJ(JordanNormalJ j, double[][] v)
JordanNormalVJ Constructor -
Method Summary
Modifier and Type Method Description JordanNormalJ
j()
Retrieve the Jordan Normal J Matrixdouble[][]
recoverOriginal()
Recover the Original Matrix using V.J.V-1double[][]
v()
Retrieve the Jordan Normal V MatrixMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
JordanNormalVJ
JordanNormalVJ Constructor- Parameters:
j
- Jordan Normal Jv
- Jordan Normal V- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
j
Retrieve the Jordan Normal J Matrix- Returns:
- Jordan Normal J Matrix
-
v
public double[][] v()Retrieve the Jordan Normal V Matrix- Returns:
- Jordan Normal V Matrix
-
recoverOriginal
public double[][] recoverOriginal()Recover the Original Matrix using V.J.V-1- Returns:
- The Original Matrix
-