Class JordanNormalVJ

java.lang.Object
org.drip.numerical.decomposition.JordanNormalVJ

public class JordanNormalVJ
extends java.lang.Object
JordanNormalVJ holds the V and the J components of the Jordan Normal Form Matrix. The References are:

  • Dunford, N., and J. Schwartz (1963): Linear Operators II: Spectral Theory: Self-adjoint Operators in the Hilbert Space Wiley Interscience Hoboken NJ
  • Gradshteyn, I. S., I. M. Ryzhik, Y. V. Geronimus, M. Y. Tseytlin, and A. Jeffrey (2015): Tables of Integrals, Series, and Products Academic Press Cambridge MA
  • Guo, J. M., Z. W. Wang, and X. Li (2019): Sharp Upper Bounds of the Spectral Radius of a Graph Discrete Mathematics 342 (9) 2559-2563
  • Lax, P. D. (2002): Functional Analysis Wiley Interscience Hoboken NJ
  • Wikipedia (2024): Spectral Radius https://en.wikipedia.org/wiki/Spectral_radius




Author:
Lakshmi Krishnamurthy
  • Constructor Summary

    Constructors
    Constructor Description
    JordanNormalVJ​(JordanNormalJ j, double[][] v)
    JordanNormalVJ Constructor
  • Method Summary

    Modifier and Type Method Description
    JordanNormalJ j()
    Retrieve the Jordan Normal J Matrix
    double[][] recoverOriginal()
    Recover the Original Matrix using V.J.V-1
    double[][] v()
    Retrieve the Jordan Normal V Matrix

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • JordanNormalVJ

      public JordanNormalVJ​(JordanNormalJ j, double[][] v) throws java.lang.Exception
      JordanNormalVJ Constructor
      Parameters:
      j - Jordan Normal J
      v - Jordan Normal V
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • j

      public JordanNormalJ j()
      Retrieve the Jordan Normal J Matrix
      Returns:
      Jordan Normal J Matrix
    • v

      public double[][] v()
      Retrieve the Jordan Normal V Matrix
      Returns:
      Jordan Normal V Matrix
    • recoverOriginal

      public double[][] recoverOriginal()
      Recover the Original Matrix using V.J.V-1
      Returns:
      The Original Matrix