Class R1ToR1IntegrandLimitEstimator

java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.numerical.estimation.R1ToR1Estimator
org.drip.numerical.estimation.R1ToR1IntegrandLimitEstimator
Direct Known Subclasses:
ErrorFunction, ErrorFunctionComplement

public abstract class R1ToR1IntegrandLimitEstimator
extends R1ToR1Estimator
R1ToR1IntegrandLimitEstimator exposes the Stubs behind the Integrand Based R1 - R1 Approximate Numerical Estimators with the Limits as the Variate. The References are:

  • Mortici, C. (2011): Improved Asymptotic Formulas for the Gamma Function Computers and Mathematics with Applications 61 (11) 3364-3369
  • National Institute of Standards and Technology (2018): NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5.11
  • Nemes, G. (2010): On the Coefficients of the Asymptotic Expansion of n! https://arxiv.org/abs/1003.2907 arXiv
  • Toth V. T. (2016): Programmable Calculators – The Gamma Function http://www.rskey.org/CMS/index.php/the-library/11
  • Wikipedia (2019): Stirling's Approximation https://en.wikipedia.org/wiki/Stirling%27s_approximation


Author:
Lakshmi Krishnamurthy
  • Method Details

    • integrand

      public abstract R1ToR1 integrand()
      Retrieve the R1 To R1 erf Integrand
      Returns:
      The R1 To R1 erf Integrand
    • leftLimit

      public double leftLimit()
      Retrieve the Left Limit
      Returns:
      The Left Limit
    • evaluate

      public double evaluate​(double x) throws java.lang.Exception
      Description copied from class: R1ToR1
      Evaluate for the given variate
      Specified by:
      evaluate in class R1ToR1
      Parameters:
      x - Variate
      Returns:
      Returns the calculated value
      Throws:
      java.lang.Exception - Thrown if evaluation cannot be done