Package org.drip.numerical.estimation
Class R1ToR1IntegrandLimitEstimator
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.numerical.estimation.R1ToR1Estimator
org.drip.numerical.estimation.R1ToR1IntegrandLimitEstimator
- Direct Known Subclasses:
ErrorFunction
,ErrorFunctionComplement
public abstract class R1ToR1IntegrandLimitEstimator extends R1ToR1Estimator
R1ToR1IntegrandLimitEstimator exposes the Stubs behind the Integrand Based R1 -
R1 Approximate Numerical Estimators with the Limits as the Variate. The References are:
- Mortici, C. (2011): Improved Asymptotic Formulas for the Gamma Function Computers and Mathematics with Applications 61 (11) 3364-3369
- National Institute of Standards and Technology (2018): NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5.11
- Nemes, G. (2010): On the Coefficients of the Asymptotic Expansion of n! https://arxiv.org/abs/1003.2907 arXiv
- Toth V. T. (2016): Programmable Calculators – The Gamma Function http://www.rskey.org/CMS/index.php/the-library/11
- Wikipedia (2019): Stirling's Approximation https://en.wikipedia.org/wiki/Stirling%27s_approximation
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Methods inherited from class org.drip.numerical.estimation.R1ToR1Estimator
boundedEstimate, seriesEstimate, seriesEstimateNative
Methods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
integrand
Retrieve the R1 To R1 erf Integrand- Returns:
- The R1 To R1 erf Integrand
-
leftLimit
public double leftLimit()Retrieve the Left Limit- Returns:
- The Left Limit
-
evaluate
public double evaluate(double x) throws java.lang.ExceptionDescription copied from class:R1ToR1
Evaluate for the given variate
-