Package org.drip.function.e2erf
Class ErrorFunction
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.numerical.estimation.R1ToR1Estimator
org.drip.numerical.estimation.R1ToR1IntegrandLimitEstimator
org.drip.function.e2erf.ErrorFunction
- Direct Known Subclasses:
AbramowitzStegun
public class ErrorFunction extends R1ToR1IntegrandLimitEstimator
ErrorFunction implements the E2 Error Function (erf). The References are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Chang, S. H., P. C. Cosman, L. B. Milstein (2011): Chernoff-Type Bounds for Gaussian Error Function IEEE Transactions on Communications 59 (11) 2939-2944
- Cody, W. J. (1991): Algorithm 715: SPECFUN – A Portable FORTRAN Package of Special Function Routines and Test Drivers ACM Transactions on Mathematical Software 19 (1) 22-32
- Schopf, H. M., and P. H. Supancic (2014): On Burmann’s Theorem and its Application to Problems of Linear and Non-linear Heat Transfer and Diffusion https://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
- Wikipedia (2019): Error Function https://en.wikipedia.org/wiki/Error_function
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd To Rd Function Analysis
- Package = E2 erf and erf-1 Implementations
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description ErrorFunction(R1ToR1Series r1ToR1SeriesGenerator, DerivativeControl dc)
ErrorFunction Constructor -
Method Summary
Modifier and Type Method Description R1ToR1
antiDerivative()
Compute the Anti-Derivative Functiondouble
cdf(double x)
Compute the CDF Value for the given Xdouble
derivative(double z, int order)
Calculate the derivative as a doubledouble
erfc(double x)
Compute the erfc Value for the given Xdouble
gaussianDensityIntegral(double a, double b, R1UnivariateNormal r1UnivariateNormal)
Compute the E2 erf Gaussian Density Integral over -inf to +infstatic ErrorFunction
HansHeinrichBurmannConvergent()
Construct the Convergent Hans Heinrich Burmann Version of the E2 erfstatic ErrorFunction
HansHeinrichBurmannSchopfSupancic2014()
Construct the Schopf-Supancic (2014) Hans Heinrich Burmann Version of the E2 erfR1ToR1
integrand()
Retrieve the R1 To R1 erf Integrandstatic ErrorFunction
MacLaurin(int termCount)
Construct the Euler-MacLaurin Instance of the E2 erfdouble
q(double x)
Compute the Q Value for the given XR1Estimate
seriesEstimateNative(double x)
Compute the Built-in Higher Order Series EstimatesMethods inherited from class org.drip.numerical.estimation.R1ToR1IntegrandLimitEstimator
evaluate, leftLimit
Methods inherited from class org.drip.numerical.estimation.R1ToR1Estimator
boundedEstimate, seriesEstimate
Methods inherited from class org.drip.function.definition.R1ToR1
conditionNumber, differential, differential, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
ErrorFunction
public ErrorFunction(R1ToR1Series r1ToR1SeriesGenerator, DerivativeControl dc) throws java.lang.ExceptionErrorFunction Constructor- Parameters:
r1ToR1SeriesGenerator
- R1 To R1 Series Generatordc
- Differential Control- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
MacLaurin
Construct the Euler-MacLaurin Instance of the E2 erf- Parameters:
termCount
- The Count of Approximation Terms- Returns:
- The Euler-MacLaurin Instance of the E2 erf
-
HansHeinrichBurmannConvergent
Construct the Convergent Hans Heinrich Burmann Version of the E2 erf- Returns:
- The Convergent Hans Heinrich Burmann Version of the E2 erf
-
HansHeinrichBurmannSchopfSupancic2014
Construct the Schopf-Supancic (2014) Hans Heinrich Burmann Version of the E2 erf- Returns:
- The Schopf-Supancic (2014) Hans Heinrich Burmann Version of the E2 erf
-
derivative
public double derivative(double z, int order) throws java.lang.ExceptionDescription copied from class:R1ToR1
Calculate the derivative as a double- Overrides:
derivative
in classR1ToR1
- Parameters:
z
- Variate at which the derivative is to be calculatedorder
- Order of the derivative to be computed- Returns:
- The Derivative
- Throws:
java.lang.Exception
- Thrown if Inputs are Invalid
-
antiDerivative
Description copied from class:R1ToR1
Compute the Anti-Derivative Function- Overrides:
antiDerivative
in classR1ToR1
- Returns:
- The Anti-Derivative Function
-
seriesEstimateNative
Description copied from class:R1ToR1Estimator
Compute the Built-in Higher Order Series Estimates- Overrides:
seriesEstimateNative
in classR1ToR1Estimator
- Parameters:
x
- X- Returns:
- The Built-in Higher Order Series Estimates
-
integrand
Description copied from class:R1ToR1IntegrandLimitEstimator
Retrieve the R1 To R1 erf Integrand- Specified by:
integrand
in classR1ToR1IntegrandLimitEstimator
- Returns:
- The R1 To R1 erf Integrand
-
q
public double q(double x) throws java.lang.ExceptionCompute the Q Value for the given X- Parameters:
x
- X- Returns:
- The Q Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
cdf
public double cdf(double x) throws java.lang.ExceptionCompute the CDF Value for the given X- Parameters:
x
- X- Returns:
- The CDF Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
erfc
public double erfc(double x) throws java.lang.ExceptionCompute the erfc Value for the given X- Parameters:
x
- X- Returns:
- The erfc Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
gaussianDensityIntegral
public double gaussianDensityIntegral(double a, double b, R1UnivariateNormal r1UnivariateNormal) throws java.lang.ExceptionCompute the E2 erf Gaussian Density Integral over -inf to +inf- Parameters:
a
- The Scale Parameterb
- The Displacement Parameterr1UnivariateNormal
- The R1 Gaussian Distribution Parameters- Returns:
- The E2 erf Gaussian Density Integral over -inf to +inf
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-