Class SuccessiveOverRelaxationConvergenceAnalyzer
java.lang.Object
org.drip.numerical.iterativesolver.SuccessiveOverRelaxationConvergenceAnalyzer
public class SuccessiveOverRelaxationConvergenceAnalyzer
extends java.lang.Object
SuccessiveOverRelaxationConvergenceAnalyzer implements the Convergence Analytics for SOR and the
SSOR schemes. The References are:
- Greenbaum, A. (1997): Iterative Methods for Solving Linear Systems Society for Industrial and Applied Mathematics Philadelphia, PA
- Hackbusch, W. (2016): Iterative Solution of Large Sparse Systems of Equations Spring-Verlag Berlin, Germany
- Wikipedia (2023): Symmetric Successive Over-Relaxation https://en.wikipedia.org/wiki/Symmetric_successive_over-relaxation
- Wikipedia (2024): Successive Over-Relaxation https://en.wikipedia.org/wiki/Successive_over-relaxation
- Young, D. M. (1950): Iterative methods for solving partial difference equations of elliptical type Harvard University Cambridge, MA
- Construct the R1 To R1 Bessel First Kind Frobenius Summation Series
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities
- Package = Linear System Iterative Solver Schemes
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description SuccessiveOverRelaxationConvergenceAnalyzer(double[][] squareMatrix, double relaxationParameter, double jacobiIterationMatrixSpectralRadius)Construct an Instance of SuccessiveOverRelaxationConvergenceAnalyzer from the Inputs -
Method Summary
Modifier and Type Method Description SuccessiveOverRelaxationConvergenceCheckcheck()Compute the Convergence Check Criteria StatusdoublegaussSeidelRate()Estimate the Gauss-Seidel Convergence Rate from the Relaxation Parameter and the Jacobi Iteration Matrix Spectral Radiusdouble[][]jacobiIterationMatrix()Retrieve the Jacobi Iteration MatrixbooleanjacobiIterationMatrixRealEigenvalues()Indicate if the Jacobi Iteration Matrix has Real EigenvaluesdoublejacobiIterationMatrixSpectralRadius()Retrieve the Jacobi Iteration Matrix Spectral RadiusbooleanjacobiSpectralRadiusVerification()Indicate if the Jacobi Spectral Radius satisfies Convergence CheckdoubleoptimalRate()Compute the Convergence Rate corresponding to Optimal Relaxation ParameterdoubleoptimalRelaxationParameter()Calculate the Optimal Relaxation Parameter from the Jacobi Iteration Matrix Spectral Radiusdoublerate()Estimate the Convergence Rate from the Relaxation Parameter and the Jacobi Iteration Matrix Spectral RadiusdoublerelaxationParameter()Retrieve the Relaxation ParameterbooleanrelaxationParameterRangeVerification()Indicate if the Relaxation Parameter Range satisfies Convergence Checkdouble[][]squareMatrix()Retrieve the Square Matrixstatic SuccessiveOverRelaxationConvergenceAnalyzerStandard(double[][] squareMatrix, double jacobiIterationMatrixSpectralRadius)Construct a Standard Instance of SuccessiveOverRelaxationConvergenceAnalyzerMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
SuccessiveOverRelaxationConvergenceAnalyzer
public SuccessiveOverRelaxationConvergenceAnalyzer(double[][] squareMatrix, double relaxationParameter, double jacobiIterationMatrixSpectralRadius) throws java.lang.ExceptionConstruct an Instance of SuccessiveOverRelaxationConvergenceAnalyzer from the Inputs- Parameters:
squareMatrix- Input Square MatrixrelaxationParameter- Relaxation ParameterjacobiIterationMatrixSpectralRadius- Jacobi Iteration Matrix Spectral Radius- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
Standard
public static final SuccessiveOverRelaxationConvergenceAnalyzer Standard(double[][] squareMatrix, double jacobiIterationMatrixSpectralRadius)Construct a Standard Instance of SuccessiveOverRelaxationConvergenceAnalyzer- Parameters:
squareMatrix- Input Square MatrixjacobiIterationMatrixSpectralRadius- Jacobi Iteration Matrix Spectral Radius- Returns:
- Standard Instance of SuccessiveOverRelaxationConvergenceAnalyzer
-
squareMatrix
public double[][] squareMatrix()Retrieve the Square Matrix- Returns:
- Square Matrix
-
relaxationParameter
public double relaxationParameter()Retrieve the Relaxation Parameter- Returns:
- Relaxation Parameter
-
jacobiIterationMatrixSpectralRadius
public double jacobiIterationMatrixSpectralRadius()Retrieve the Jacobi Iteration Matrix Spectral Radius- Returns:
- Jacobi Iteration Matrix Spectral Radius
-
jacobiIterationMatrix
public double[][] jacobiIterationMatrix()Retrieve the Jacobi Iteration Matrix- Returns:
- Jacobi Iteration Matrix
-
jacobiIterationMatrixRealEigenvalues
public boolean jacobiIterationMatrixRealEigenvalues()Indicate if the Jacobi Iteration Matrix has Real Eigenvalues- Returns:
- TRUE - Jacobi Iteration Matrix has Real Eigenvalues
-
jacobiSpectralRadiusVerification
public boolean jacobiSpectralRadiusVerification()Indicate if the Jacobi Spectral Radius satisfies Convergence Check- Returns:
- TRUE - Jacobi Spectral Radius satisfies Convergence Check
-
relaxationParameterRangeVerification
public boolean relaxationParameterRangeVerification()Indicate if the Relaxation Parameter Range satisfies Convergence Check- Returns:
- TRUE - Relaxation Parameter Range satisfies Convergence Check
-
check
Compute the Convergence Check Criteria Status- Returns:
- Convergence Check Criteria Status
-
optimalRelaxationParameter
public double optimalRelaxationParameter()Calculate the Optimal Relaxation Parameter from the Jacobi Iteration Matrix Spectral Radius- Returns:
- Optimal Relaxation Parameter
-
gaussSeidelRate
public double gaussSeidelRate()Estimate the Gauss-Seidel Convergence Rate from the Relaxation Parameter and the Jacobi Iteration Matrix Spectral Radius- Returns:
- Gauss-Seidel Convergence Rate
-
rate
public double rate()Estimate the Convergence Rate from the Relaxation Parameter and the Jacobi Iteration Matrix Spectral Radius- Returns:
- Convergence Rate
-
optimalRate
public double optimalRate()Compute the Convergence Rate corresponding to Optimal Relaxation Parameter- Returns:
- Convergence Rate corresponding to Optimal Relaxation Parameter
-