Class SuccessiveOverRelaxationConvergenceAnalyzer
java.lang.Object
org.drip.numerical.iterativesolver.SuccessiveOverRelaxationConvergenceAnalyzer
public class SuccessiveOverRelaxationConvergenceAnalyzer
extends java.lang.Object
SuccessiveOverRelaxationConvergenceAnalyzer implements the Convergence Analytics for SOR and the
SSOR schemes. The References are:
- Greenbaum, A. (1997): Iterative Methods for Solving Linear Systems Society for Industrial and Applied Mathematics Philadelphia, PA
- Hackbusch, W. (2016): Iterative Solution of Large Sparse Systems of Equations Spring-Verlag Berlin, Germany
- Wikipedia (2023): Symmetric Successive Over-Relaxation https://en.wikipedia.org/wiki/Symmetric_successive_over-relaxation
- Wikipedia (2024): Successive Over-Relaxation https://en.wikipedia.org/wiki/Successive_over-relaxation
- Young, D. M. (1950): Iterative methods for solving partial difference equations of elliptical type Harvard University Cambridge, MA
- Construct the R1 To R1 Bessel First Kind Frobenius Summation Series
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities
- Package = Linear System Iterative Solver Schemes
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description SuccessiveOverRelaxationConvergenceAnalyzer(double[][] squareMatrix, double relaxationParameter, double jacobiIterationMatrixSpectralRadius)
Construct an Instance of SuccessiveOverRelaxationConvergenceAnalyzer from the Inputs -
Method Summary
Modifier and Type Method Description SuccessiveOverRelaxationConvergenceCheck
check()
Compute the Convergence Check Criteria Statusdouble
gaussSeidelRate()
Estimate the Gauss-Seidel Convergence Rate from the Relaxation Parameter and the Jacobi Iteration Matrix Spectral Radiusdouble[][]
jacobiIterationMatrix()
Retrieve the Jacobi Iteration Matrixboolean
jacobiIterationMatrixRealEigenvalues()
Indicate if the Jacobi Iteration Matrix has Real Eigenvaluesdouble
jacobiIterationMatrixSpectralRadius()
Retrieve the Jacobi Iteration Matrix Spectral Radiusboolean
jacobiSpectralRadiusVerification()
Indicate if the Jacobi Spectral Radius satisfies Convergence Checkdouble
optimalRate()
Compute the Convergence Rate corresponding to Optimal Relaxation Parameterdouble
optimalRelaxationParameter()
Calculate the Optimal Relaxation Parameter from the Jacobi Iteration Matrix Spectral Radiusdouble
rate()
Estimate the Convergence Rate from the Relaxation Parameter and the Jacobi Iteration Matrix Spectral Radiusdouble
relaxationParameter()
Retrieve the Relaxation Parameterboolean
relaxationParameterRangeVerification()
Indicate if the Relaxation Parameter Range satisfies Convergence Checkdouble[][]
squareMatrix()
Retrieve the Square Matrixstatic SuccessiveOverRelaxationConvergenceAnalyzer
Standard(double[][] squareMatrix, double jacobiIterationMatrixSpectralRadius)
Construct a Standard Instance of SuccessiveOverRelaxationConvergenceAnalyzerMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
SuccessiveOverRelaxationConvergenceAnalyzer
public SuccessiveOverRelaxationConvergenceAnalyzer(double[][] squareMatrix, double relaxationParameter, double jacobiIterationMatrixSpectralRadius) throws java.lang.ExceptionConstruct an Instance of SuccessiveOverRelaxationConvergenceAnalyzer from the Inputs- Parameters:
squareMatrix
- Input Square MatrixrelaxationParameter
- Relaxation ParameterjacobiIterationMatrixSpectralRadius
- Jacobi Iteration Matrix Spectral Radius- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
Standard
public static final SuccessiveOverRelaxationConvergenceAnalyzer Standard(double[][] squareMatrix, double jacobiIterationMatrixSpectralRadius)Construct a Standard Instance of SuccessiveOverRelaxationConvergenceAnalyzer- Parameters:
squareMatrix
- Input Square MatrixjacobiIterationMatrixSpectralRadius
- Jacobi Iteration Matrix Spectral Radius- Returns:
- Standard Instance of SuccessiveOverRelaxationConvergenceAnalyzer
-
squareMatrix
public double[][] squareMatrix()Retrieve the Square Matrix- Returns:
- Square Matrix
-
relaxationParameter
public double relaxationParameter()Retrieve the Relaxation Parameter- Returns:
- Relaxation Parameter
-
jacobiIterationMatrixSpectralRadius
public double jacobiIterationMatrixSpectralRadius()Retrieve the Jacobi Iteration Matrix Spectral Radius- Returns:
- Jacobi Iteration Matrix Spectral Radius
-
jacobiIterationMatrix
public double[][] jacobiIterationMatrix()Retrieve the Jacobi Iteration Matrix- Returns:
- Jacobi Iteration Matrix
-
jacobiIterationMatrixRealEigenvalues
public boolean jacobiIterationMatrixRealEigenvalues()Indicate if the Jacobi Iteration Matrix has Real Eigenvalues- Returns:
- TRUE - Jacobi Iteration Matrix has Real Eigenvalues
-
jacobiSpectralRadiusVerification
public boolean jacobiSpectralRadiusVerification()Indicate if the Jacobi Spectral Radius satisfies Convergence Check- Returns:
- TRUE - Jacobi Spectral Radius satisfies Convergence Check
-
relaxationParameterRangeVerification
public boolean relaxationParameterRangeVerification()Indicate if the Relaxation Parameter Range satisfies Convergence Check- Returns:
- TRUE - Relaxation Parameter Range satisfies Convergence Check
-
check
Compute the Convergence Check Criteria Status- Returns:
- Convergence Check Criteria Status
-
optimalRelaxationParameter
public double optimalRelaxationParameter()Calculate the Optimal Relaxation Parameter from the Jacobi Iteration Matrix Spectral Radius- Returns:
- Optimal Relaxation Parameter
-
gaussSeidelRate
public double gaussSeidelRate()Estimate the Gauss-Seidel Convergence Rate from the Relaxation Parameter and the Jacobi Iteration Matrix Spectral Radius- Returns:
- Gauss-Seidel Convergence Rate
-
rate
public double rate()Estimate the Convergence Rate from the Relaxation Parameter and the Jacobi Iteration Matrix Spectral Radius- Returns:
- Convergence Rate
-
optimalRate
public double optimalRate()Compute the Convergence Rate corresponding to Optimal Relaxation Parameter- Returns:
- Convergence Rate corresponding to Optimal Relaxation Parameter
-