Package org.drip.numerical.linearsolver
Class TridiagonalScheme
java.lang.Object
org.drip.numerical.linearsolver.TridiagonalScheme
- Direct Known Subclasses:
NonPeriodicTridiagonalScheme
,PeriodicTridiagonalScheme
public abstract class TridiagonalScheme
extends java.lang.Object
TridiagonalScheme exposes the O(n) solver functionality for solving Tridiagonal Matrices. The
References are:
- Batista, M., and A. R. A. Ibrahim-Karawia (2009): The use of Sherman-Morrison-Woodbury formula to solve cyclic block tridiagonal and cyclic block penta-diagonal linear systems of equations Applied Mathematics of Computation 210 (2) 558-563
- Datta, B. N. (2010): Numerical Linear Algebra and Applications 2nd Edition SIAM Philadelphia, PA
- Gallopoulos, E., B. Phillippe, and A. H. Sameh (2016): Parallelism in Matrix Computations Spring Berlin, Germany
- Niyogi, P. (2006): Introduction to Computational Fluid Dynamics Pearson London, UK
- Wikipedia (2024): Tridiagonal Matrix Algorithm https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities
- Package = Linear Algebra Matrix Transform Library
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description R1Tridiagonal
matrix()
Retrieve the Tridiagonal Matrixdouble[]
rhsArray()
Retrieve the RHS Arrayabstract double[]
solve()
Solve the Tridiagonal System given the RHSMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
matrix
Retrieve the Tridiagonal Matrix- Returns:
- Tridiagonal Matrix
-
rhsArray
public double[] rhsArray()Retrieve the RHS Array- Returns:
- Square Matrix
-
solve
public abstract double[] solve()Solve the Tridiagonal System given the RHS- Returns:
- The Solution
-