Class TridiagonalScheme

java.lang.Object
org.drip.numerical.linearsolver.TridiagonalScheme
Direct Known Subclasses:
NonPeriodicTridiagonalScheme, PeriodicTridiagonalScheme

public abstract class TridiagonalScheme
extends java.lang.Object
TridiagonalScheme exposes the O(n) solver functionality for solving Tridiagonal Matrices. The References are:

  • Batista, M., and A. R. A. Ibrahim-Karawia (2009): The use of Sherman-Morrison-Woodbury formula to solve cyclic block tridiagonal and cyclic block penta-diagonal linear systems of equations Applied Mathematics of Computation 210 (2) 558-563
  • Datta, B. N. (2010): Numerical Linear Algebra and Applications 2nd Edition SIAM Philadelphia, PA
  • Gallopoulos, E., B. Phillippe, and A. H. Sameh (2016): Parallelism in Matrix Computations Spring Berlin, Germany
  • Niyogi, P. (2006): Introduction to Computational Fluid Dynamics Pearson London, UK
  • Wikipedia (2024): Tridiagonal Matrix Algorithm https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm




Author:
Lakshmi Krishnamurthy
  • Method Summary

    Modifier and Type Method Description
    R1Tridiagonal matrix()
    Retrieve the Tridiagonal Matrix
    double[] rhsArray()
    Retrieve the RHS Array
    abstract double[] solve()
    Solve the Tridiagonal System given the RHS

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Method Details

    • matrix

      public R1Tridiagonal matrix()
      Retrieve the Tridiagonal Matrix
      Returns:
      Tridiagonal Matrix
    • rhsArray

      public double[] rhsArray()
      Retrieve the RHS Array
      Returns:
      Square Matrix
    • solve

      public abstract double[] solve()
      Solve the Tridiagonal System given the RHS
      Returns:
      The Solution