Class R1SquareConsistencyValidator

java.lang.Object
org.drip.numerical.matrixnorm.R1SquareConsistencyValidator

public class R1SquareConsistencyValidator
extends java.lang.Object
R1SquareConsistencyValidator contains the Consistency Validation Checks for the Norm Evaluator of a R1 Square Matrix. The References are:

  • Alon, N., and A. Naor (2004): Approximating the Cut-norm via Grothendieck Inequality Proceedings of the 36th Annual ACM Symposium on Theory of Computing STOC’04 ACM Chicago IL
  • Golub, G. H., and C. F. van Loan (1996): Matrix Computations 3rd Edition Johns Hopkins University Press Baltimore MD
  • Horn, R. A., and C. R. Johnson (2013): Matrix Analysis 2nd Edition Cambridge University Press Cambridge UK
  • Lazslo, L. (2012): Large Networks and Graph Limits American Mathematical Society Providence RI
  • Wikipedia (2024): Matrix Norm https://en.wikipedia.org/wiki/Matrix_norm




Author:
Lakshmi Krishnamurthy
  • Constructor Summary

    Constructors
    Constructor Description
    R1SquareConsistencyValidator​(boolean positiveValued, boolean definite, boolean absolutelyHomogeneous, boolean matrixMatrixSubAdditive, boolean matrixMatrixSubMultiplicative, boolean matrixVectorSubMultiplicative)
    R1SquareConsistencyValidator Constructor
  • Method Summary

    Modifier and Type Method Description
    boolean absolutelyHomogeneous()
    Indicate if the Norm is Absolutely Homogeneous
    static boolean AbsolutelyHomogeneous​(double norm, double alpha, double alphaNorm)
    Indicate if the Norm is Absolutely Homogeneous
    boolean definite()
    Indicate if the Norm is Definite
    static boolean Definite​(double norm, double[][] r1Grid)
    Indicate if the Norm is Definite
    boolean matrixMatrixSubAdditive()
    Indicate if the Norm is Matrix-Matrix Sub-additive
    static boolean MatrixMatrixSubAdditive​(double normA, double normB, double normAPlusB)
    Indicate if the Norm is Matrix-Matrix Sub-additive
    boolean matrixMatrixSubMultiplicative()
    Indicate if the Norm is Matrix-Matrix Sub-multiplicative
    static boolean MatrixMatrixSubMultiplicative​(double normA, double normB, double normAB)
    Indicate if the Norm is Matrix-Matrix Sub-multiplicative
    boolean matrixVectorSubMultiplicative()
    Indicate if the Norm is Matrix-Vector Sub-multiplicative
    static boolean MatrixVectorSubMultiplicative​(double normA, double normX, double normAX)
    Indicate if the Norm is Matrix-Vector Sub-multiplicative
    boolean positiveValued()
    Indicate if the Norm is Positive Valued
    static boolean PositiveValued​(double norm)
    Indicate if the Norm is Positive Valued
    static R1SquareConsistencyValidator Standard​(double normA, double[][] a, double normB, double alphaNormA, double alpha, double normAPlusB, double normAB, double normV, double normAV)
    Construct a Standard Instance of R1SquareConsistencyValidator
    boolean validate()
    Check if the Validation has been successful

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • R1SquareConsistencyValidator

      public R1SquareConsistencyValidator​(boolean positiveValued, boolean definite, boolean absolutelyHomogeneous, boolean matrixMatrixSubAdditive, boolean matrixMatrixSubMultiplicative, boolean matrixVectorSubMultiplicative)
      R1SquareConsistencyValidator Constructor
      Parameters:
      positiveValued - TRUE - Norm is Positive Valued
      definite - TRUE - Norm is Definite
      absolutelyHomogeneous - TRUE - Norm is Absolutely Homogeneous
      matrixMatrixSubAdditive - TRUE - Norm is Matrix-Matrix Sub-additive
      matrixMatrixSubMultiplicative - TRUE - Norm is Matrix-Matrix Sub-multiplicative
      matrixVectorSubMultiplicative - TRUE - Norm is Matrix-Vector Sub-multiplicative
  • Method Details

    • PositiveValued

      public static final boolean PositiveValued​(double norm)
      Indicate if the Norm is Positive Valued
      Parameters:
      norm - Norm
      Returns:
      TRUE - Norm is Positive Valued
    • Definite

      public static final boolean Definite​(double norm, double[][] r1Grid)
      Indicate if the Norm is Definite
      Parameters:
      norm - Norm
      r1Grid - R1 Square Matrix
      Returns:
      TRUE - Norm is Definite
    • AbsolutelyHomogeneous

      public static final boolean AbsolutelyHomogeneous​(double norm, double alpha, double alphaNorm)
      Indicate if the Norm is Absolutely Homogeneous
      Parameters:
      norm - Norm
      alpha - Alpha
      alphaNorm - Alpha Norm
      Returns:
      TRUE - Norm is Absolutely Homogeneous
    • MatrixMatrixSubAdditive

      public static final boolean MatrixMatrixSubAdditive​(double normA, double normB, double normAPlusB)
      Indicate if the Norm is Matrix-Matrix Sub-additive
      Parameters:
      normA - Norm of Matrix A
      normB - Norm of Matrix B
      normAPlusB - Norm of Matrix A Plus B
      Returns:
      TRUE - Norm is Matrix-Matrix Sub-additive
    • MatrixMatrixSubMultiplicative

      public static final boolean MatrixMatrixSubMultiplicative​(double normA, double normB, double normAB)
      Indicate if the Norm is Matrix-Matrix Sub-multiplicative
      Parameters:
      normA - Norm of Matrix A
      normB - Norm of Matrix B
      normAB - Norm of Matrix A.B
      Returns:
      TRUE - Norm is Matrix-Matrix Sub-multiplicative
    • MatrixVectorSubMultiplicative

      public static final boolean MatrixVectorSubMultiplicative​(double normA, double normX, double normAX)
      Indicate if the Norm is Matrix-Vector Sub-multiplicative
      Parameters:
      normA - Norm of Matrix A
      normX - Norm of Vector X
      normAX - Norm of Matrix A.X
      Returns:
      TRUE - Norm is Matrix-Vector Sub-multiplicative
    • Standard

      public static final R1SquareConsistencyValidator Standard​(double normA, double[][] a, double normB, double alphaNormA, double alpha, double normAPlusB, double normAB, double normV, double normAV)
      Construct a Standard Instance of R1SquareConsistencyValidator
      Parameters:
      normA - Norm of Matrix A
      a - Matrix A
      normB - Norm of Matrix B
      alphaNormA - Norm of Alpha-Matrix A
      alpha - Alpha
      normAPlusB - Norm of A and B Matrix-Matrix Sum
      normAB - Norm of A and B Matrix-Matrix Product
      normV - Norm of Vector V
      normAV - Norm of A and V Matrix-Vector Product
      Returns:
      Standard Instance of R1SquareConsistencyValidator
    • positiveValued

      public boolean positiveValued()
      Indicate if the Norm is Positive Valued
      Returns:
      TRUE - Norm is Positive Valued
    • definite

      public boolean definite()
      Indicate if the Norm is Definite
      Returns:
      TRUE - Norm is Definite
    • absolutelyHomogeneous

      public boolean absolutelyHomogeneous()
      Indicate if the Norm is Absolutely Homogeneous
      Returns:
      TRUE - Norm is Absolutely Homogeneous
    • matrixMatrixSubAdditive

      public boolean matrixMatrixSubAdditive()
      Indicate if the Norm is Matrix-Matrix Sub-additive
      Returns:
      TRUE - Norm is Matrix-Matrix Sub-additive
    • matrixMatrixSubMultiplicative

      public boolean matrixMatrixSubMultiplicative()
      Indicate if the Norm is Matrix-Matrix Sub-multiplicative
      Returns:
      TRUE - Norm is Matrix-Matrix Sub-multiplicative
    • matrixVectorSubMultiplicative

      public boolean matrixVectorSubMultiplicative()
      Indicate if the Norm is Matrix-Vector Sub-multiplicative
      Returns:
      TRUE - Norm is Matrix-Vector Sub-multiplicative
    • validate

      public boolean validate()
      Check if the Validation has been successful
      Returns:
      TRUE - The Validation has been successful