Package org.drip.numerical.matrixnorm
Class R1SquareConsistencyValidator
java.lang.Object
org.drip.numerical.matrixnorm.R1SquareConsistencyValidator
public class R1SquareConsistencyValidator
extends java.lang.Object
R1SquareConsistencyValidator contains the Consistency Validation Checks for the Norm Evaluator of a
R1 Square Matrix. The References are:
- Alon, N., and A. Naor (2004): Approximating the Cut-norm via Grothendieck Inequality Proceedings of the 36th Annual ACM Symposium on Theory of Computing STOC’04 ACM Chicago IL
- Golub, G. H., and C. F. van Loan (1996): Matrix Computations 3rd Edition Johns Hopkins University Press Baltimore MD
- Horn, R. A., and C. R. Johnson (2013): Matrix Analysis 2nd Edition Cambridge University Press Cambridge UK
- Lazslo, L. (2012): Large Networks and Graph Limits American Mathematical Society Providence RI
- Wikipedia (2024): Matrix Norm https://en.wikipedia.org/wiki/Matrix_norm
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities
- Package = Implementation of Matrix Norm Variants
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1SquareConsistencyValidator(boolean positiveValued, boolean definite, boolean absolutelyHomogeneous, boolean matrixMatrixSubAdditive, boolean matrixMatrixSubMultiplicative, boolean matrixVectorSubMultiplicative)
R1SquareConsistencyValidator Constructor -
Method Summary
Modifier and Type Method Description boolean
absolutelyHomogeneous()
Indicate if the Norm is Absolutely Homogeneousstatic boolean
AbsolutelyHomogeneous(double norm, double alpha, double alphaNorm)
Indicate if the Norm is Absolutely Homogeneousboolean
definite()
Indicate if the Norm is Definitestatic boolean
Definite(double norm, double[][] r1Grid)
Indicate if the Norm is Definiteboolean
matrixMatrixSubAdditive()
Indicate if the Norm is Matrix-Matrix Sub-additivestatic boolean
MatrixMatrixSubAdditive(double normA, double normB, double normAPlusB)
Indicate if the Norm is Matrix-Matrix Sub-additiveboolean
matrixMatrixSubMultiplicative()
Indicate if the Norm is Matrix-Matrix Sub-multiplicativestatic boolean
MatrixMatrixSubMultiplicative(double normA, double normB, double normAB)
Indicate if the Norm is Matrix-Matrix Sub-multiplicativeboolean
matrixVectorSubMultiplicative()
Indicate if the Norm is Matrix-Vector Sub-multiplicativestatic boolean
MatrixVectorSubMultiplicative(double normA, double normX, double normAX)
Indicate if the Norm is Matrix-Vector Sub-multiplicativeboolean
positiveValued()
Indicate if the Norm is Positive Valuedstatic boolean
PositiveValued(double norm)
Indicate if the Norm is Positive Valuedstatic R1SquareConsistencyValidator
Standard(double normA, double[][] a, double normB, double alphaNormA, double alpha, double normAPlusB, double normAB, double normV, double normAV)
Construct a Standard Instance of R1SquareConsistencyValidatorboolean
validate()
Check if the Validation has been successfulMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1SquareConsistencyValidator
public R1SquareConsistencyValidator(boolean positiveValued, boolean definite, boolean absolutelyHomogeneous, boolean matrixMatrixSubAdditive, boolean matrixMatrixSubMultiplicative, boolean matrixVectorSubMultiplicative)R1SquareConsistencyValidator Constructor- Parameters:
positiveValued
- TRUE - Norm is Positive Valueddefinite
- TRUE - Norm is DefiniteabsolutelyHomogeneous
- TRUE - Norm is Absolutely HomogeneousmatrixMatrixSubAdditive
- TRUE - Norm is Matrix-Matrix Sub-additivematrixMatrixSubMultiplicative
- TRUE - Norm is Matrix-Matrix Sub-multiplicativematrixVectorSubMultiplicative
- TRUE - Norm is Matrix-Vector Sub-multiplicative
-
-
Method Details
-
PositiveValued
public static final boolean PositiveValued(double norm)Indicate if the Norm is Positive Valued- Parameters:
norm
- Norm- Returns:
- TRUE - Norm is Positive Valued
-
Definite
public static final boolean Definite(double norm, double[][] r1Grid)Indicate if the Norm is Definite- Parameters:
norm
- Normr1Grid
- R1 Square Matrix- Returns:
- TRUE - Norm is Definite
-
AbsolutelyHomogeneous
public static final boolean AbsolutelyHomogeneous(double norm, double alpha, double alphaNorm)Indicate if the Norm is Absolutely Homogeneous- Parameters:
norm
- Normalpha
- AlphaalphaNorm
- Alpha Norm- Returns:
- TRUE - Norm is Absolutely Homogeneous
-
MatrixMatrixSubAdditive
public static final boolean MatrixMatrixSubAdditive(double normA, double normB, double normAPlusB)Indicate if the Norm is Matrix-Matrix Sub-additive- Parameters:
normA
- Norm of Matrix AnormB
- Norm of Matrix BnormAPlusB
- Norm of Matrix A Plus B- Returns:
- TRUE - Norm is Matrix-Matrix Sub-additive
-
MatrixMatrixSubMultiplicative
public static final boolean MatrixMatrixSubMultiplicative(double normA, double normB, double normAB)Indicate if the Norm is Matrix-Matrix Sub-multiplicative- Parameters:
normA
- Norm of Matrix AnormB
- Norm of Matrix BnormAB
- Norm of Matrix A.B- Returns:
- TRUE - Norm is Matrix-Matrix Sub-multiplicative
-
MatrixVectorSubMultiplicative
public static final boolean MatrixVectorSubMultiplicative(double normA, double normX, double normAX)Indicate if the Norm is Matrix-Vector Sub-multiplicative- Parameters:
normA
- Norm of Matrix AnormX
- Norm of Vector XnormAX
- Norm of Matrix A.X- Returns:
- TRUE - Norm is Matrix-Vector Sub-multiplicative
-
Standard
public static final R1SquareConsistencyValidator Standard(double normA, double[][] a, double normB, double alphaNormA, double alpha, double normAPlusB, double normAB, double normV, double normAV)Construct a Standard Instance of R1SquareConsistencyValidator- Parameters:
normA
- Norm of Matrix Aa
- Matrix AnormB
- Norm of Matrix BalphaNormA
- Norm of Alpha-Matrix Aalpha
- AlphanormAPlusB
- Norm of A and B Matrix-Matrix SumnormAB
- Norm of A and B Matrix-Matrix ProductnormV
- Norm of Vector VnormAV
- Norm of A and V Matrix-Vector Product- Returns:
- Standard Instance of R1SquareConsistencyValidator
-
positiveValued
public boolean positiveValued()Indicate if the Norm is Positive Valued- Returns:
- TRUE - Norm is Positive Valued
-
definite
public boolean definite()Indicate if the Norm is Definite- Returns:
- TRUE - Norm is Definite
-
absolutelyHomogeneous
public boolean absolutelyHomogeneous()Indicate if the Norm is Absolutely Homogeneous- Returns:
- TRUE - Norm is Absolutely Homogeneous
-
matrixMatrixSubAdditive
public boolean matrixMatrixSubAdditive()Indicate if the Norm is Matrix-Matrix Sub-additive- Returns:
- TRUE - Norm is Matrix-Matrix Sub-additive
-
matrixMatrixSubMultiplicative
public boolean matrixMatrixSubMultiplicative()Indicate if the Norm is Matrix-Matrix Sub-multiplicative- Returns:
- TRUE - Norm is Matrix-Matrix Sub-multiplicative
-
matrixVectorSubMultiplicative
public boolean matrixVectorSubMultiplicative()Indicate if the Norm is Matrix-Vector Sub-multiplicative- Returns:
- TRUE - Norm is Matrix-Vector Sub-multiplicative
-
validate
public boolean validate()Check if the Validation has been successful- Returns:
- TRUE - The Validation has been successful
-