Class SingleSequenceAgnosticMetrics

java.lang.Object
org.drip.sequence.metrics.SingleSequenceAgnosticMetrics
Direct Known Subclasses:
BoundedSequenceAgnosticMetrics, IntegerSequenceAgnosticMetrics, PoissonSequenceAgnosticMetrics

public class SingleSequenceAgnosticMetrics
extends java.lang.Object
SingleSequenceAgnosticMetrics contains the Sample Distribution Metrics and Agnostic Bounds related to the specified Sequence.



Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • SingleSequenceAgnosticMetrics

      public SingleSequenceAgnosticMetrics​(double[] adblSequence, R1Univariate distPopulation) throws java.lang.Exception
      Build out the Sequence and their Metrics
      Parameters:
      adblSequence - Array of Sequence Entries
      distPopulation - The True Underlying Generator Distribution of the Population
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • empiricalCentralMoment

      public double empiricalCentralMoment​(int iMoment, boolean bAbsolute) throws java.lang.Exception
      Compute the Specified Central Moment of the Sample Sequence
      Parameters:
      iMoment - The Moment
      bAbsolute - TRUE - The Moment sought is on the Absolute Value
      Returns:
      The Specified Central Moment of the Sample Sequence
      Throws:
      java.lang.Exception - Thrown if the Inputs are invalid
    • empiricalRawMoment

      public double empiricalRawMoment​(int iMoment, boolean bAbsolute) throws java.lang.Exception
      Compute the Specified Raw Moment of the Sample Sequence
      Parameters:
      iMoment - The Moment
      bAbsolute - TRUE - The Moment sought is on the Absolute Value
      Returns:
      The Specified Raw Moment of the Sample Sequence
      Throws:
      java.lang.Exception - Thrown if the Inputs are invalid
    • empiricalAnchorMoment

      public double empiricalAnchorMoment​(int iMoment, double dblAnchor, boolean bAbsolute) throws java.lang.Exception
      Compute the Specified Anchor Moment of the Sample Sequence
      Parameters:
      iMoment - The Moment
      dblAnchor - The Anchor Pivot off of which the Moment is calculated
      bAbsolute - TRUE - The Moment sought is on the Absolute Value
      Returns:
      The Specified Anchor Moment of the Sample Sequence
      Throws:
      java.lang.Exception - Thrown if the Inputs are invalid
    • functionSequenceMetrics

      public SingleSequenceAgnosticMetrics functionSequenceMetrics​(R1ToR1 au)
      Generate the Metrics for the Univariate Function Sequence
      Parameters:
      au - The Univariate Function
      Returns:
      Metrics for the Univariate Function Sequence
    • populationDistribution

      public R1Univariate populationDistribution()
      Retrieve the Population Distribution
      Returns:
      The Population Distribution
    • empiricalExpectation

      public double empiricalExpectation()
      Retrieve the Sample Expectation
      Returns:
      The Sample Expectation
    • populationMean

      public double populationMean() throws java.lang.Exception
      Retrieve the Population Mean
      Returns:
      The Population Mean
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
    • empiricalVariance

      public double empiricalVariance()
      Retrieve the Sample Variance
      Returns:
      The Sample Variance
    • populationVariance

      public double populationVariance() throws java.lang.Exception
      Retrieve the Population Variance
      Returns:
      The Population Variance
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
    • isPositive

      public boolean isPositive()
      Retrieve the Sequence Positiveness Flag
      Returns:
      TRUE - The Sequence is Positiveness
    • sequence

      public double[] sequence()
      Retrieve the Input Sequence
      Returns:
      The Input Sequence
    • markovUpperProbabilityBound

      public double markovUpperProbabilityBound​(double dblLevel, R1ToR1 auNonDecreasing) throws java.lang.Exception
      Retrieve the Markov Upper Limiting Probability Bound for the Specified Level: - P (X gte t) lte E[f(X)] / f(t)
      Parameters:
      dblLevel - The Specified Level
      auNonDecreasing - The Non-decreasing Bounding Transformer Function
      Returns:
      The Markov Upper Limiting Probability Bound for the Specified Level
      Throws:
      java.lang.Exception - Thrown if the Inputs are invalid
    • chebyshevBound

      public PivotedDepartureBounds chebyshevBound​(double dblLevel)
      Retrieve the Mean Departure Bounds Using the Chebyshev's Inequality
      Parameters:
      dblLevel - The Level at which the Departure is sought
      Returns:
      The Mean Departure Bounds Instance
    • centralMomentBound

      public PivotedDepartureBounds centralMomentBound​(double dblLevel, int iMoment)
      Retrieve the Mean Departure Bounds Using the Central Moment Bounding Inequality
      Parameters:
      dblLevel - The Level at which the Departure is sought
      iMoment - The Moment Bound sought
      Returns:
      The Mean Departure Bounds Instance
    • chebyshevCantelliBound

      public PivotedDepartureBounds chebyshevCantelliBound​(double dblLevel)
      Retrieve the Mean Departure Bounds Using the Chebyshev-Cantelli Inequality
      Parameters:
      dblLevel - The Level at which the Departure is sought
      Returns:
      The Mean Departure Bounds
    • chebyshevAssociationBound

      public PivotedDepartureBounds chebyshevAssociationBound​(R1ToR1 au1, boolean bNonDecreasing1, R1ToR1 au2, boolean bNonDecreasing2)
      Retrieve the Chebyshev's Association Joint Expectation Bound
      Parameters:
      au1 - Function 1 Operating On Sequence 1
      bNonDecreasing1 - TRUE - Function 1 is non-decreasing
      au2 - Function 2 Operating On Sequence 2
      bNonDecreasing2 - TRUE - Function 2 is non-decreasing
      Returns:
      The Chebyshev's Association Joint Expectation Bound
    • weakLawAverageBounds

      public PivotedDepartureBounds weakLawAverageBounds​(double dblLevel)
      Estimate Mean Departure Bounds of the Average using the Weak Law of Large Numbers
      Parameters:
      dblLevel - The Level at which the Departure is sought
      Returns:
      The Mean Departure Bounds