Package org.drip.sequence.metrics
Class SingleSequenceAgnosticMetrics
java.lang.Object
org.drip.sequence.metrics.SingleSequenceAgnosticMetrics
- Direct Known Subclasses:
BoundedSequenceAgnosticMetrics,IntegerSequenceAgnosticMetrics,PoissonSequenceAgnosticMetrics
public class SingleSequenceAgnosticMetrics
extends java.lang.Object
SingleSequenceAgnosticMetrics contains the Sample Distribution Metrics and Agnostic Bounds related
to the specified Sequence.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Metrics
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description SingleSequenceAgnosticMetrics(double[] adblSequence, R1Univariate distPopulation)Build out the Sequence and their Metrics -
Method Summary
Modifier and Type Method Description PivotedDepartureBoundscentralMomentBound(double dblLevel, int iMoment)Retrieve the Mean Departure Bounds Using the Central Moment Bounding InequalityPivotedDepartureBoundschebyshevAssociationBound(R1ToR1 au1, boolean bNonDecreasing1, R1ToR1 au2, boolean bNonDecreasing2)Retrieve the Chebyshev's Association Joint Expectation BoundPivotedDepartureBoundschebyshevBound(double dblLevel)Retrieve the Mean Departure Bounds Using the Chebyshev's InequalityPivotedDepartureBoundschebyshevCantelliBound(double dblLevel)Retrieve the Mean Departure Bounds Using the Chebyshev-Cantelli InequalitydoubleempiricalAnchorMoment(int iMoment, double dblAnchor, boolean bAbsolute)Compute the Specified Anchor Moment of the Sample SequencedoubleempiricalCentralMoment(int iMoment, boolean bAbsolute)Compute the Specified Central Moment of the Sample SequencedoubleempiricalExpectation()Retrieve the Sample ExpectationdoubleempiricalRawMoment(int iMoment, boolean bAbsolute)Compute the Specified Raw Moment of the Sample SequencedoubleempiricalVariance()Retrieve the Sample VarianceSingleSequenceAgnosticMetricsfunctionSequenceMetrics(R1ToR1 au)Generate the Metrics for the Univariate Function SequencebooleanisPositive()Retrieve the Sequence Positiveness FlagdoublemarkovUpperProbabilityBound(double dblLevel, R1ToR1 auNonDecreasing)Retrieve the Markov Upper Limiting Probability Bound for the Specified Level: - P (X gte t) lte E[f(X)] / f(t)R1UnivariatepopulationDistribution()Retrieve the Population DistributiondoublepopulationMean()Retrieve the Population MeandoublepopulationVariance()Retrieve the Population Variancedouble[]sequence()Retrieve the Input SequencePivotedDepartureBoundsweakLawAverageBounds(double dblLevel)Estimate Mean Departure Bounds of the Average using the Weak Law of Large NumbersMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
SingleSequenceAgnosticMetrics
public SingleSequenceAgnosticMetrics(double[] adblSequence, R1Univariate distPopulation) throws java.lang.ExceptionBuild out the Sequence and their Metrics- Parameters:
adblSequence- Array of Sequence EntriesdistPopulation- The True Underlying Generator Distribution of the Population- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
empiricalCentralMoment
public double empiricalCentralMoment(int iMoment, boolean bAbsolute) throws java.lang.ExceptionCompute the Specified Central Moment of the Sample Sequence- Parameters:
iMoment- The MomentbAbsolute- TRUE - The Moment sought is on the Absolute Value- Returns:
- The Specified Central Moment of the Sample Sequence
- Throws:
java.lang.Exception- Thrown if the Inputs are invalid
-
empiricalRawMoment
public double empiricalRawMoment(int iMoment, boolean bAbsolute) throws java.lang.ExceptionCompute the Specified Raw Moment of the Sample Sequence- Parameters:
iMoment- The MomentbAbsolute- TRUE - The Moment sought is on the Absolute Value- Returns:
- The Specified Raw Moment of the Sample Sequence
- Throws:
java.lang.Exception- Thrown if the Inputs are invalid
-
empiricalAnchorMoment
public double empiricalAnchorMoment(int iMoment, double dblAnchor, boolean bAbsolute) throws java.lang.ExceptionCompute the Specified Anchor Moment of the Sample Sequence- Parameters:
iMoment- The MomentdblAnchor- The Anchor Pivot off of which the Moment is calculatedbAbsolute- TRUE - The Moment sought is on the Absolute Value- Returns:
- The Specified Anchor Moment of the Sample Sequence
- Throws:
java.lang.Exception- Thrown if the Inputs are invalid
-
functionSequenceMetrics
Generate the Metrics for the Univariate Function Sequence- Parameters:
au- The Univariate Function- Returns:
- Metrics for the Univariate Function Sequence
-
populationDistribution
Retrieve the Population Distribution- Returns:
- The Population Distribution
-
empiricalExpectation
public double empiricalExpectation()Retrieve the Sample Expectation- Returns:
- The Sample Expectation
-
populationMean
public double populationMean() throws java.lang.ExceptionRetrieve the Population Mean- Returns:
- The Population Mean
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
empiricalVariance
public double empiricalVariance()Retrieve the Sample Variance- Returns:
- The Sample Variance
-
populationVariance
public double populationVariance() throws java.lang.ExceptionRetrieve the Population Variance- Returns:
- The Population Variance
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
isPositive
public boolean isPositive()Retrieve the Sequence Positiveness Flag- Returns:
- TRUE - The Sequence is Positiveness
-
sequence
public double[] sequence()Retrieve the Input Sequence- Returns:
- The Input Sequence
-
markovUpperProbabilityBound
public double markovUpperProbabilityBound(double dblLevel, R1ToR1 auNonDecreasing) throws java.lang.ExceptionRetrieve the Markov Upper Limiting Probability Bound for the Specified Level: - P (X gte t) lte E[f(X)] / f(t)- Parameters:
dblLevel- The Specified LevelauNonDecreasing- The Non-decreasing Bounding Transformer Function- Returns:
- The Markov Upper Limiting Probability Bound for the Specified Level
- Throws:
java.lang.Exception- Thrown if the Inputs are invalid
-
chebyshevBound
Retrieve the Mean Departure Bounds Using the Chebyshev's Inequality- Parameters:
dblLevel- The Level at which the Departure is sought- Returns:
- The Mean Departure Bounds Instance
-
centralMomentBound
Retrieve the Mean Departure Bounds Using the Central Moment Bounding Inequality- Parameters:
dblLevel- The Level at which the Departure is soughtiMoment- The Moment Bound sought- Returns:
- The Mean Departure Bounds Instance
-
chebyshevCantelliBound
Retrieve the Mean Departure Bounds Using the Chebyshev-Cantelli Inequality- Parameters:
dblLevel- The Level at which the Departure is sought- Returns:
- The Mean Departure Bounds
-
chebyshevAssociationBound
public PivotedDepartureBounds chebyshevAssociationBound(R1ToR1 au1, boolean bNonDecreasing1, R1ToR1 au2, boolean bNonDecreasing2)Retrieve the Chebyshev's Association Joint Expectation Bound- Parameters:
au1- Function 1 Operating On Sequence 1bNonDecreasing1- TRUE - Function 1 is non-decreasingau2- Function 2 Operating On Sequence 2bNonDecreasing2- TRUE - Function 2 is non-decreasing- Returns:
- The Chebyshev's Association Joint Expectation Bound
-
weakLawAverageBounds
Estimate Mean Departure Bounds of the Average using the Weak Law of Large Numbers- Parameters:
dblLevel- The Level at which the Departure is sought- Returns:
- The Mean Departure Bounds
-