Package org.drip.sequence.metrics
Class UnitSequenceAgnosticMetrics
java.lang.Object
org.drip.sequence.metrics.SingleSequenceAgnosticMetrics
org.drip.sequence.metrics.BoundedSequenceAgnosticMetrics
org.drip.sequence.metrics.UnitSequenceAgnosticMetrics
public class UnitSequenceAgnosticMetrics extends BoundedSequenceAgnosticMetrics
UnitSequenceAgnosticMetrics contains the Sample Distribution Metrics and Agnostic Bounds related to
the specified Bounded [0, 1] Sequence.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Metrics
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description UnitSequenceAgnosticMetrics(double[] adblSequence, double dblPopulationMean)
UnitSequenceAgnosticMetrics Constructor -
Method Summary
Modifier and Type Method Description double
chernoffBinomialUpperBound(double dblLevel)
Compute the Chernoff Binomial Upper Bounddouble
chernoffPoissonUpperBound(double dblLevel)
Compute the Chernoff-Poisson Binomial Upper BoundPivotedDepartureBounds
karpHagerupRubBounds(double dblLevel)
Compute the Karp/Hagerup/Rub Pivot Departure Bounds outlined below: - Karp, R.double
populationMean()
Retrieve the Mean of the Underlying DistributionMethods inherited from class org.drip.sequence.metrics.BoundedSequenceAgnosticMetrics
bennettAverageBounds, bernsteinAverageBounds, chernoffHoeffdingAverageBounds, support
Methods inherited from class org.drip.sequence.metrics.SingleSequenceAgnosticMetrics
centralMomentBound, chebyshevAssociationBound, chebyshevBound, chebyshevCantelliBound, empiricalAnchorMoment, empiricalCentralMoment, empiricalExpectation, empiricalRawMoment, empiricalVariance, functionSequenceMetrics, isPositive, markovUpperProbabilityBound, populationDistribution, populationVariance, sequence, weakLawAverageBounds
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
UnitSequenceAgnosticMetrics
public UnitSequenceAgnosticMetrics(double[] adblSequence, double dblPopulationMean) throws java.lang.ExceptionUnitSequenceAgnosticMetrics Constructor- Parameters:
adblSequence
- The Random SequencedblPopulationMean
- The Mean of the Underlying Distribution- Throws:
java.lang.Exception
- Thrown if UnitSequenceAgnosticMetrics cannot be constructed
-
-
Method Details
-
populationMean
public double populationMean()Retrieve the Mean of the Underlying Distribution- Overrides:
populationMean
in classSingleSequenceAgnosticMetrics
- Returns:
- The Mean of the Underlying Distribution
-
chernoffBinomialUpperBound
public double chernoffBinomialUpperBound(double dblLevel) throws java.lang.ExceptionCompute the Chernoff Binomial Upper Bound- Parameters:
dblLevel
- The Level at which the Bound is sought- Returns:
- The Chernoff Binomial Upper Bound
- Throws:
java.lang.Exception
- Thrown if the Chernoff Binomial Upper Bound cannot be computed
-
chernoffPoissonUpperBound
public double chernoffPoissonUpperBound(double dblLevel) throws java.lang.ExceptionCompute the Chernoff-Poisson Binomial Upper Bound- Parameters:
dblLevel
- The Level at which the Bound is sought- Returns:
- The Chernoff-Poisson Binomial Upper Bound
- Throws:
java.lang.Exception
- Thrown if the Chernoff-Poisson Binomial Upper Bound cannot be computed
-
karpHagerupRubBounds
Compute the Karp/Hagerup/Rub Pivot Departure Bounds outlined below: - Karp, R. M. (1988): Probabilistic Analysis of Algorithms, University of California, Berkeley. - Hagerup, T., and C. Rub (1990): A Guided Tour of Chernoff Bounds, Information Processing Letters, 33:305-308.- Parameters:
dblLevel
- The Level at which the Bound is sought- Returns:
- The Karp/Hagerup/Rub Pivot Departure Bounds
-