Package org.drip.sequence.metrics
Class UnitSequenceAgnosticMetrics
java.lang.Object
org.drip.sequence.metrics.SingleSequenceAgnosticMetrics
org.drip.sequence.metrics.BoundedSequenceAgnosticMetrics
org.drip.sequence.metrics.UnitSequenceAgnosticMetrics
public class UnitSequenceAgnosticMetrics extends BoundedSequenceAgnosticMetrics
UnitSequenceAgnosticMetrics contains the Sample Distribution Metrics and Agnostic Bounds related to
the specified Bounded [0, 1] Sequence.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Metrics
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description UnitSequenceAgnosticMetrics(double[] adblSequence, double dblPopulationMean)UnitSequenceAgnosticMetrics Constructor -
Method Summary
Modifier and Type Method Description doublechernoffBinomialUpperBound(double dblLevel)Compute the Chernoff Binomial Upper BounddoublechernoffPoissonUpperBound(double dblLevel)Compute the Chernoff-Poisson Binomial Upper BoundPivotedDepartureBoundskarpHagerupRubBounds(double dblLevel)Compute the Karp/Hagerup/Rub Pivot Departure Bounds outlined below: - Karp, R.doublepopulationMean()Retrieve the Mean of the Underlying DistributionMethods inherited from class org.drip.sequence.metrics.BoundedSequenceAgnosticMetrics
bennettAverageBounds, bernsteinAverageBounds, chernoffHoeffdingAverageBounds, supportMethods inherited from class org.drip.sequence.metrics.SingleSequenceAgnosticMetrics
centralMomentBound, chebyshevAssociationBound, chebyshevBound, chebyshevCantelliBound, empiricalAnchorMoment, empiricalCentralMoment, empiricalExpectation, empiricalRawMoment, empiricalVariance, functionSequenceMetrics, isPositive, markovUpperProbabilityBound, populationDistribution, populationVariance, sequence, weakLawAverageBoundsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
UnitSequenceAgnosticMetrics
public UnitSequenceAgnosticMetrics(double[] adblSequence, double dblPopulationMean) throws java.lang.ExceptionUnitSequenceAgnosticMetrics Constructor- Parameters:
adblSequence- The Random SequencedblPopulationMean- The Mean of the Underlying Distribution- Throws:
java.lang.Exception- Thrown if UnitSequenceAgnosticMetrics cannot be constructed
-
-
Method Details
-
populationMean
public double populationMean()Retrieve the Mean of the Underlying Distribution- Overrides:
populationMeanin classSingleSequenceAgnosticMetrics- Returns:
- The Mean of the Underlying Distribution
-
chernoffBinomialUpperBound
public double chernoffBinomialUpperBound(double dblLevel) throws java.lang.ExceptionCompute the Chernoff Binomial Upper Bound- Parameters:
dblLevel- The Level at which the Bound is sought- Returns:
- The Chernoff Binomial Upper Bound
- Throws:
java.lang.Exception- Thrown if the Chernoff Binomial Upper Bound cannot be computed
-
chernoffPoissonUpperBound
public double chernoffPoissonUpperBound(double dblLevel) throws java.lang.ExceptionCompute the Chernoff-Poisson Binomial Upper Bound- Parameters:
dblLevel- The Level at which the Bound is sought- Returns:
- The Chernoff-Poisson Binomial Upper Bound
- Throws:
java.lang.Exception- Thrown if the Chernoff-Poisson Binomial Upper Bound cannot be computed
-
karpHagerupRubBounds
Compute the Karp/Hagerup/Rub Pivot Departure Bounds outlined below: - Karp, R. M. (1988): Probabilistic Analysis of Algorithms, University of California, Berkeley. - Hagerup, T., and C. Rub (1990): A Guided Tour of Chernoff Bounds, Information Processing Letters, 33:305-308.- Parameters:
dblLevel- The Level at which the Bound is sought- Returns:
- The Karp/Hagerup/Rub Pivot Departure Bounds
-