Class UnitSequenceAgnosticMetrics


public class UnitSequenceAgnosticMetrics
extends BoundedSequenceAgnosticMetrics
UnitSequenceAgnosticMetrics contains the Sample Distribution Metrics and Agnostic Bounds related to the specified Bounded [0, 1] Sequence.



Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • UnitSequenceAgnosticMetrics

      public UnitSequenceAgnosticMetrics​(double[] adblSequence, double dblPopulationMean) throws java.lang.Exception
      UnitSequenceAgnosticMetrics Constructor
      Parameters:
      adblSequence - The Random Sequence
      dblPopulationMean - The Mean of the Underlying Distribution
      Throws:
      java.lang.Exception - Thrown if UnitSequenceAgnosticMetrics cannot be constructed
  • Method Details

    • populationMean

      public double populationMean()
      Retrieve the Mean of the Underlying Distribution
      Overrides:
      populationMean in class SingleSequenceAgnosticMetrics
      Returns:
      The Mean of the Underlying Distribution
    • chernoffBinomialUpperBound

      public double chernoffBinomialUpperBound​(double dblLevel) throws java.lang.Exception
      Compute the Chernoff Binomial Upper Bound
      Parameters:
      dblLevel - The Level at which the Bound is sought
      Returns:
      The Chernoff Binomial Upper Bound
      Throws:
      java.lang.Exception - Thrown if the Chernoff Binomial Upper Bound cannot be computed
    • chernoffPoissonUpperBound

      public double chernoffPoissonUpperBound​(double dblLevel) throws java.lang.Exception
      Compute the Chernoff-Poisson Binomial Upper Bound
      Parameters:
      dblLevel - The Level at which the Bound is sought
      Returns:
      The Chernoff-Poisson Binomial Upper Bound
      Throws:
      java.lang.Exception - Thrown if the Chernoff-Poisson Binomial Upper Bound cannot be computed
    • karpHagerupRubBounds

      public PivotedDepartureBounds karpHagerupRubBounds​(double dblLevel)
      Compute the Karp/Hagerup/Rub Pivot Departure Bounds outlined below: - Karp, R. M. (1988): Probabilistic Analysis of Algorithms, University of California, Berkeley. - Hagerup, T., and C. Rub (1990): A Guided Tour of Chernoff Bounds, Information Processing Letters, 33:305-308.
      Parameters:
      dblLevel - The Level at which the Bound is sought
      Returns:
      The Karp/Hagerup/Rub Pivot Departure Bounds