Package org.drip.specialfunction.group
Class RiemannSphereSpanner
java.lang.Object
org.drip.specialfunction.group.RiemannSphereSpanner
public class RiemannSphereSpanner
extends java.lang.Object
RiemannSphereSpanner determines the Conformality and Tile Scheme of the Schwarz Singular Triangle
Maps over the Riemann Sphere. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Schwarz Triangle Tiles Nothing
- Schwarz Triangle Riemann Nothing
- Schwarz Triangle Complex Nothing
- Schwarz Triangle Upper Half Nothing
- RiemannSphereSpanner Constructor
- Retrieve the Schwarz Triangle Map Array
- Indicate if the Spanner is Conformal
- Indicate how the Schwarz Triangle Tiles the Riemann Sphere
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Special Function Singularity Solution Group |
- Author:
- Lakshmi Krishnamurthy
-
Field Summary
Fields Modifier and Type Field Description static int
SCHWARZ_TRIANGLE_TILES_COMPLEX_PLANE
Schwarz Triangle Tiles the Complex Planestatic int
SCHWARZ_TRIANGLE_TILES_NOTHING
Schwarz Triangle Tiles Nothingstatic int
SCHWARZ_TRIANGLE_TILES_RIEMANN_SPHERE
Schwarz Triangle Tiles the Riemann Spherestatic int
SCHWARZ_TRIANGLE_TILES_UPPER_HALF_PLANE
Schwarz Triangle Tiles the Upper Half Plane -
Constructor Summary
Constructors Constructor Description RiemannSphereSpanner(SchwarzTriangleMap[] schwarzTriangleMapArray)
RiemannSphereSpanner Constructor -
Method Summary
Modifier and Type Method Description boolean
isConformal()
Indicate if the Spanner is ConformalSchwarzTriangleMap[]
schwarzTriangleMapArray()
Retrieve the Schwarz Triangle Map Arrayint
tileIndicator()
Indicate how the Schwarz Triangle Tiles the Riemann SphereMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Field Details
-
SCHWARZ_TRIANGLE_TILES_NOTHING
public static final int SCHWARZ_TRIANGLE_TILES_NOTHINGSchwarz Triangle Tiles Nothing- See Also:
- Constant Field Values
-
SCHWARZ_TRIANGLE_TILES_RIEMANN_SPHERE
public static final int SCHWARZ_TRIANGLE_TILES_RIEMANN_SPHERESchwarz Triangle Tiles the Riemann Sphere- See Also:
- Constant Field Values
-
SCHWARZ_TRIANGLE_TILES_COMPLEX_PLANE
public static final int SCHWARZ_TRIANGLE_TILES_COMPLEX_PLANESchwarz Triangle Tiles the Complex Plane- See Also:
- Constant Field Values
-
SCHWARZ_TRIANGLE_TILES_UPPER_HALF_PLANE
public static final int SCHWARZ_TRIANGLE_TILES_UPPER_HALF_PLANESchwarz Triangle Tiles the Upper Half Plane- See Also:
- Constant Field Values
-
-
Constructor Details
-
RiemannSphereSpanner
public RiemannSphereSpanner(SchwarzTriangleMap[] schwarzTriangleMapArray) throws java.lang.ExceptionRiemannSphereSpanner Constructor- Parameters:
schwarzTriangleMapArray
- The Schwarz Triangle Map Array- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
schwarzTriangleMapArray
Retrieve the Schwarz Triangle Map Array- Returns:
- The Schwarz Triangle Map Array
-
isConformal
public boolean isConformal()Indicate if the Spanner is Conformal- Returns:
- TRUE - The Spanner is Conformal
-
tileIndicator
public int tileIndicator() throws java.lang.ExceptionIndicate how the Schwarz Triangle Tiles the Riemann Sphere- Returns:
- Indicator of how the Schwarz Triangle Tiles the Riemann Sphere
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-