Class SeriesEstimator

java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.numerical.estimation.R1ToR1Estimator
org.drip.specialfunction.hypergeometric.SeriesEstimator

public abstract class SeriesEstimator
extends R1ToR1Estimator
SeriesEstimator estimates the 2F1 Hyper-geometric Function using a Series Expansion. The References are:

  • Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
  • Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
  • Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
  • National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
  • Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
It provides the following functionality:
  • Compute the Pochhammer Cumulative Series of Hyper-geometric Estimator
  • Retrieve the Underlying Cumulative Series

Module Computational Core Module
Library Function Analysis Library
Project Special Function Implementation and Analysis
Package Hyper-geometric Function Estimation Schemes
Author:
Lakshmi Krishnamurthy
  • Method Details

    • Pochhammer

      public static final SeriesEstimator Pochhammer​(HypergeometricParameters hypergeometricParameters, int termCount)
      Compute the Pochhammer Cumulative Series of Hyper-geometric Estimator
      Parameters:
      hypergeometricParameters - The Hyper-geometric Parameters
      termCount - Number of Terms in the Estimation
      Returns:
      The Pochhammer Cumulative Series of Hyper-geometric Estimator
    • series

      public R1ToR1Series series()
      Retrieve the Underlying Cumulative Series
      Returns:
      The Underlying Cumulative Series