Class UpperSFixed
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.numerical.estimation.R1ToR1Estimator
org.drip.specialfunction.incompletegamma.UpperSFixed
public abstract class UpperSFixed extends R1ToR1Estimator
UpperSFixed implements the Upper Incomplete Gamma Function using the Power Expansion Series,
starting with s = 0 if Recurrence is employed. The References are:
- Geddes, K. O., M. L. Glasser, R. A. Moore, and T. C. Scott (1990): Evaluation of Classes of Definite Integrals involving Elementary Functions via Differentiation of Special Functions Applicable Algebra in Engineering, Communications, and 1 (2) 149-165
- Gradshteyn, I. S., I. M. Ryzhik, Y. V. Geronimus, M. Y. Tseytlin, and A. Jeffrey (2015): Tables of Integrals, Series, and Products Academic Press
- Mathar, R. J. (2010): Numerical Evaluation of the Oscillatory Integral over eiπx x(1/x) between 1 and ∞ https://arxiv.org/pdf/0912.3844.pdf arXiV
- National Institute of Standards and Technology (2019): Incomplete Gamma and Related Functions https://dlmf.nist.gov/8
- Wikipedia (2019): Incomplete Gamma Function https://en.wikipedia.org/wiki/Incomplete_gamma_function
- Compute the NIST (2019) Version of Upper Incomplete Gamma s = 0 Estimator
- Compute the Weisstein Version of Upper Incomplete Gamma Estimator
- UpperSFixed Constructor
- Retrieve the Underlying Upper S Fixed Series
- Evaluate the Upper Gamma (-n, z) recursively from n = 0
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Upper/Lower Incomplete Gamma Functions |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description double
evaluateRecursive(int n, double z)
Evaluate the Upper Gamma (-n, z) recursively from n = 0static UpperSFixed
NIST2019(int termCount)
Compute the NIST (2019) Version of Upper Incomplete Gamma s = 0 EstimatorR1Estimate
seriesEstimateNative(double x)
Compute the Built-in Higher Order Series EstimatesR1ToR1Series
upperSFixedSeries()
Retrieve the Underlying Upper S Fixed Seriesstatic UpperSFixed
Weisstein(int s)
Compute the Weisstein Version of Upper Incomplete Gamma EstimatorMethods inherited from class org.drip.numerical.estimation.R1ToR1Estimator
boundedEstimate, seriesEstimate
Methods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, evaluate, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
NIST2019
Compute the NIST (2019) Version of Upper Incomplete Gamma s = 0 Estimator- Parameters:
termCount
- Number of Terms in the Estimation- Returns:
- NIST (2019) Version of Upper Incomplete Gamma s = 0 Estimator
-
Weisstein
Compute the Weisstein Version of Upper Incomplete Gamma Estimator- Parameters:
s
- s- Returns:
- Weisstein Version of Upper Incomplete Gamma Estimator
-
upperSFixedSeries
Retrieve the Underlying Upper S Fixed Series- Returns:
- The Underlying Upper S Fixed Series
-
seriesEstimateNative
Description copied from class:R1ToR1Estimator
Compute the Built-in Higher Order Series Estimates- Overrides:
seriesEstimateNative
in classR1ToR1Estimator
- Parameters:
x
- X- Returns:
- The Built-in Higher Order Series Estimates
-
evaluateRecursive
public double evaluateRecursive(int n, double z) throws java.lang.ExceptionEvaluate the Upper Gamma (-n, z) recursively from n = 0- Parameters:
n
- nz
- z- Returns:
- Upper Gamma (-n, z)
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-