Class InfiniteSumEstimator
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.numerical.estimation.R1ToR1Estimator
org.drip.specialfunction.loggamma.InfiniteSumEstimator
public abstract class InfiniteSumEstimator extends R1ToR1Estimator
InfiniteSumEstimator estimates Log Gamma using the Infinite Series Infinite Sum. The References
are:
- Blagouchine, I. V. (2014): Re-discovery of Malmsten's Integrals, their Evaluation by Contour Integration Methods, and some Related Results Ramanujan Journal 35 (1) 21-110
- Borwein, J. M., and R. M. Corless (2017): Gamma Function and the Factorial in the Monthly https://arxiv.org/abs/1703.05349 arXiv
- Davis, P. J. (1959): Leonhard Euler's Integral: A Historical Profile of the Gamma Function American Mathematical Monthly 66 (10) 849-869
- Whitaker, E. T., and G. N. Watson (1996): A Course on Modern Analysis Cambridge University Press New York
- Wikipedia (2019): Gamma Function https://en.wikipedia.org/wiki/Gamma_function
- Compute the Euler Infinite Sum Series of Log Gamma Estimator
- Compute the Weierstrass Infinite Sum Series of Log Gamma Estimator
- Compute the Fourier Infinite Sum Series of Log Gamma Estimator
- Compute the Blagouchine (2015) Infinite Sum Series of Log Gamma Estimator
- InfiniteSumEstimator Constructor
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Analytic/Series/Integral Log Gamma Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description static InfiniteSumEstimator
Blagouchine2015(int termCount)
Compute the Blagouchine (2015) Infinite Sum Series of Log Gamma Estimatorstatic InfiniteSumEstimator
Euler(int termCount)
Compute the Euler Infinite Sum Series of Log Gamma Estimatorstatic InfiniteSumEstimator
Fourier(int termCount)
Compute the Fourier Infinite Sum Series of Log Gamma EstimatorR1ToR1Series
infiniteSumSeries()
Retrieve the Underlying Infinite Sum SeriesPoleResidue
poleResidue(double x)
Compute the Residue if the Variate is a PoleR1Estimate
seriesEstimateNative(double x)
Compute the Built-in Higher Order Series Estimatesstatic InfiniteSumEstimator
Weierstrass(int termCount)
Compute the Weierstrass Infinite Sum Series of Log Gamma EstimatorMethods inherited from class org.drip.numerical.estimation.R1ToR1Estimator
boundedEstimate, seriesEstimate
Methods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, evaluate, integrate, maxima, maxima, minima, minima
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
Euler
Compute the Euler Infinite Sum Series of Log Gamma Estimator- Parameters:
termCount
- Number of Terms in the Estimation- Returns:
- The Euler Infinite Sum Series of Log Gamma Estimator
-
Weierstrass
Compute the Weierstrass Infinite Sum Series of Log Gamma Estimator- Parameters:
termCount
- Number of Terms in the Estimation- Returns:
- The Weierstrass Infinite Sum Series of Log Gamma Estimator
-
Fourier
Compute the Fourier Infinite Sum Series of Log Gamma Estimator- Parameters:
termCount
- Number of Terms in the Estimation- Returns:
- The Fourier Infinite Sum Series of Log Gamma Estimator
-
Blagouchine2015
Compute the Blagouchine (2015) Infinite Sum Series of Log Gamma Estimator- Parameters:
termCount
- Number of Terms in the Estimation- Returns:
- The Blagouchine (2015) Infinite Sum Series of Log Gamma Estimator
-
infiniteSumSeries
Retrieve the Underlying Infinite Sum Series- Returns:
- The Underlying Infinite Sum Series
-
seriesEstimateNative
Description copied from class:R1ToR1Estimator
Compute the Built-in Higher Order Series Estimates- Overrides:
seriesEstimateNative
in classR1ToR1Estimator
- Parameters:
x
- X- Returns:
- The Built-in Higher Order Series Estimates
-
poleResidue
Description copied from class:R1ToR1
Compute the Residue if the Variate is a Pole- Overrides:
poleResidue
in classR1ToR1
- Parameters:
x
- Variate- Returns:
- The Residue if the Variate is a Pole
-