Package org.drip.specialfunction.ode
Class HilleQForm2F1
java.lang.Object
org.drip.specialfunction.ode.SecondOrder
org.drip.specialfunction.ode.HilleQForm2F1
public class HilleQForm2F1 extends SecondOrder
HilleQForm2F1 exposes the Coefficient Terms on the Q-form 2F1 Hyper-geometric ODE. The References
are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Construct the Hille Q-Form of 2F1 ODE
- Retrieve the Q Form Function
- Retrieve the v Function
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Special Function Ordinary Differential Equations |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Methods inherited from class org.drip.specialfunction.ode.SecondOrder
firstDerivativeCoefficient, orderedRegularSingularPoints, secondDerivativeCoefficient, zeroDerivativeCoefficient
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
Standard
Construct the Hille Q-Form of 2F1 ODE- Parameters:
a
- Ab
- Bc
- C- Returns:
- Hille Q-Form of 2F1 ODE
-
q
Retrieve the Q Form Function- Returns:
- The Q Form Function
-
v
Retrieve the v Function- Returns:
- The v Function
-