Class HilleQForm2F1

java.lang.Object
org.drip.specialfunction.ode.SecondOrder
org.drip.specialfunction.ode.HilleQForm2F1

public class HilleQForm2F1
extends SecondOrder
HilleQForm2F1 exposes the Coefficient Terms on the Q-form 2F1 Hyper-geometric ODE. The References are:

  • Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
  • Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
  • Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
  • National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
  • Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
It provides the following functionality:
  • Construct the Hille Q-Form of 2F1 ODE
  • Retrieve the Q Form Function
  • Retrieve the v Function

Module Computational Core Module
Library Function Analysis Library
Project Special Function Implementation and Analysis
Package Special Function Ordinary Differential Equations
Author:
Lakshmi Krishnamurthy
  • Method Details

    • Standard

      public static final HilleQForm2F1 Standard​(double a, double b, double c)
      Construct the Hille Q-Form of 2F1 ODE
      Parameters:
      a - A
      b - B
      c - C
      Returns:
      Hille Q-Form of 2F1 ODE
    • q

      public R1ToR1 q()
      Retrieve the Q Form Function
      Returns:
      The Q Form Function
    • v

      public R1ToR1 v()
      Retrieve the v Function
      Returns:
      The v Function