Package org.drip.spline.pchip
Class MonotoneConvexHaganWest
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.spline.pchip.MonotoneConvexHaganWest
public class MonotoneConvexHaganWest extends R1ToR1
MonotoneConvexHaganWest implements the regime using the Hagan and West (2006) Estimator. It
provides the following functionality:
- Create an instance of MonotoneConvexHaganWest
- Enforce the Positivity of the Inferred Response Values
- Create an Ameliorated Instance of the Current Instance
- Retrieve the Array of Predictor Ordinates
- Retrieve the Array of Response Values
Module | Product Core Module |
Library | Fixed Income Analytics |
Project | Basis Splines and Linear Compounders across a Broad Family of Spline Basis Functions |
Package | Monotone Convex Themed PCHIP Splines |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description static MonotoneConvexHaganWest
Create(double[] predictorOrdinateArray, double[] observationArray, boolean linearNodeInference)
Create an instance of MonotoneConvexHaganWestboolean
enforcePositivity()
Enforce the Positivity of the Inferred Response Valuesdouble
evaluate(double predictorOrdinate)
Evaluate for the given variateMonotoneConvexHaganWest
generateAmelioratedInstance(double[] minimumLeftResponseArray, double[] maximumLeftResponseArray, double[] minimumRightResponseArray, double[] maximumRightResponseArray, boolean enforcePositivity)
Create an Ameliorated Instance of the Current Instancedouble[]
predictorOrdinates()
Retrieve the Array of Predictor Ordinatesdouble[]
responseValues()
Retrieve the Array of Response ValuesMethods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
Create
public static final MonotoneConvexHaganWest Create(double[] predictorOrdinateArray, double[] observationArray, boolean linearNodeInference)Create an instance of MonotoneConvexHaganWest- Parameters:
predictorOrdinateArray
- Array of Predictor OrdinatesobservationArray
- Array of ObservationslinearNodeInference
- Apply Linear Node Inference from Observations- Returns:
- Instance of MonotoneConvexHaganWest
-
evaluate
public double evaluate(double predictorOrdinate) throws java.lang.ExceptionDescription copied from class:R1ToR1
Evaluate for the given variate -
enforcePositivity
public boolean enforcePositivity()Enforce the Positivity of the Inferred Response Values- Returns:
- TRUE - Positivity Enforcement is successful
-
generateAmelioratedInstance
public MonotoneConvexHaganWest generateAmelioratedInstance(double[] minimumLeftResponseArray, double[] maximumLeftResponseArray, double[] minimumRightResponseArray, double[] maximumRightResponseArray, boolean enforcePositivity)Create an Ameliorated Instance of the Current Instance- Parameters:
minimumLeftResponseArray
- Response Left FloormaximumLeftResponseArray
- Response Left CeilingminimumRightResponseArray
- Response Right FloormaximumRightResponseArray
- Response Right CeilingenforcePositivity
- TRUE - Enforce Positivity- Returns:
- The Ameliorated Version of the Current Instance
-
predictorOrdinates
public double[] predictorOrdinates()Retrieve the Array of Predictor Ordinates- Returns:
- The Array of Predictor Ordinates
-
responseValues
public double[] responseValues()Retrieve the Array of Response Values- Returns:
- The Array of Response Values
-