CoordinatedVariationTrajectoryGenerator.java

  1. package org.drip.execution.adaptive;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>CoordinatedVariationTrajectoryGenerator</i> implements the Continuous HJB-based Single Step Optimal
  79.  * Cost Trajectory using the Coordinated Variation Version of the Stochastic Volatility and the Transaction
  80.  * Function arising from the Realization of the Market State Variable as described in the "Trading Time"
  81.  * Model. The References are:
  82.  *
  83.  *  <br><br>
  84.  *  <ul>
  85.  *      <li>
  86.  *          Almgren, R. F., and N. Chriss (2000): Optimal Execution of Portfolio Transactions <i>Journal of
  87.  *              Risk</i> <b>3 (2)</b> 5-39
  88.  *      </li>
  89.  *      <li>
  90.  *          Almgren, R. F. (2009): Optimal Trading in a Dynamic Market
  91.  *              https://www.math.nyu.edu/financial_mathematics/content/02_financial/2009-2.pdf
  92.  *      </li>
  93.  *      <li>
  94.  *          Almgren, R. F. (2012): Optimal Trading with Stochastic Liquidity and Volatility <i>SIAM Journal
  95.  *          of Financial Mathematics</i> <b>3 (1)</b> 163-181
  96.  *      </li>
  97.  *      <li>
  98.  *          Geman, H., D. B. Madan, and M. Yor (2001): Time Changes for Levy Processes <i>Mathematical
  99.  *              Finance</i> <b>11 (1)</b> 79-96
  100.  *      </li>
  101.  *      <li>
  102.  *          Jones, C. M., G. Kaul, and M. L. Lipson (1994): Transactions, Volume, and Volatility <i>Review of
  103.  *              Financial Studies</i> <b>7 (4)</b> 631-651
  104.  *      </li>
  105.  *  </ul>
  106.  *
  107.  *  <br><br>
  108.  *  <ul>
  109.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  110.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/TransactionCostAnalyticsLibrary.md">Transaction Cost Analytics</a></li>
  111.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/README.md">Optimal Impact/Capture Based Trading Trajectories - Deterministic, Stochastic, Static, and Dynamic</a></li>
  112.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/adaptive/README.md">Coordinated Variation Based Adaptive Execution</a></li>
  113.  *  </ul>
  114.  *
  115.  * @author Lakshmi Krishnamurthy
  116.  */

  117. public class CoordinatedVariationTrajectoryGenerator {

  118.     /**
  119.      * Flag Indicating Trade Rate Initialization from Static Trajectory
  120.      */

  121.     public static final int TRADE_RATE_STATIC_INITIALIZATION = 1;

  122.     /**
  123.      * Flag Indicating Trade Rate Initialization to Zero Initial Value
  124.      */

  125.     public static final int TRADE_RATE_ZERO_INITIALIZATION = 2;

  126.     private org.drip.execution.strategy.OrderSpecification _os = null;
  127.     private int _iTradeRateInitializer = TRADE_RATE_ZERO_INITIALIZATION;
  128.     private org.drip.execution.tradingtime.CoordinatedVariation _cv = null;
  129.     private org.drip.execution.risk.MeanVarianceObjectiveUtility _mvou = null;
  130.     private org.drip.execution.hjb.NonDimensionalCostEvolver _ndce = null;

  131.     private org.drip.execution.dynamics.LinearPermanentExpectationParameters realizedLPEP (
  132.         final double dblMarketState)
  133.     {
  134.         try {
  135.             return new org.drip.execution.dynamics.LinearPermanentExpectationParameters (new
  136.                 org.drip.execution.parameters.ArithmeticPriceDynamicsSettings (0., new
  137.                     org.drip.function.r1tor1.FlatUnivariate (_cv.referenceVolatility() * java.lang.Math.exp
  138.                         (-0.5 * dblMarketState)), 0.), new
  139.                             org.drip.execution.profiletime.UniformParticipationRateLinear
  140.                                 (org.drip.execution.impact.ParticipationRateLinear.NoImpact()), new
  141.                                     org.drip.execution.profiletime.UniformParticipationRateLinear
  142.                                         (org.drip.execution.impact.ParticipationRateLinear.SlopeOnly
  143.                                             (_cv.referenceLiquidity() * java.lang.Math.exp
  144.                                                 (dblMarketState))));
  145.         } catch (java.lang.Exception e) {
  146.             e.printStackTrace();
  147.         }

  148.         return null;
  149.     }

  150.     /**
  151.      * CoordinatedVariationTrajectoryGenerator Constructor
  152.      *
  153.      * @param os The Order Specification
  154.      * @param cv The Coordinated Variation Instance
  155.      * @param mvou  The Mean Variance Objective Utility Function
  156.      * @param ndce The Non Dimensional Cost Evolver
  157.      * @param iTradeRateInitializer The Trade Rate Initialization Indicator
  158.      *
  159.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  160.      */

  161.     public CoordinatedVariationTrajectoryGenerator (
  162.         final org.drip.execution.strategy.OrderSpecification os,
  163.         final org.drip.execution.tradingtime.CoordinatedVariation cv,
  164.         final org.drip.execution.risk.MeanVarianceObjectiveUtility mvou,
  165.         final org.drip.execution.hjb.NonDimensionalCostEvolver ndce,
  166.         final int iTradeRateInitializer)
  167.         throws java.lang.Exception
  168.     {
  169.         if (null == (_os = os) || null == (_cv = cv) || null == (_mvou = mvou) || null == (_ndce = ndce) ||
  170.             (TRADE_RATE_STATIC_INITIALIZATION != (_iTradeRateInitializer = iTradeRateInitializer) &&
  171.                 TRADE_RATE_ZERO_INITIALIZATION != _iTradeRateInitializer))
  172.             throw new java.lang.Exception
  173.                 ("CoordinatedVariationTrajectoryGenerator Constructor => Invalid Inputs");
  174.     }

  175.     /**
  176.      * Retrieve the Trade Rate Initialization Indicator
  177.      *
  178.      * @return The Trade Rate Initialization Indicator
  179.      */

  180.     public int tradeRateInitializer()
  181.     {
  182.         return _iTradeRateInitializer;
  183.     }

  184.     /**
  185.      * Retrieve the Order Specification
  186.      *
  187.      * @return The Order Specification
  188.      */

  189.     public org.drip.execution.strategy.OrderSpecification orderSpecification()
  190.     {
  191.         return _os;
  192.     }

  193.     /**
  194.      * Retrieve the Coordinated Variation Instance
  195.      *
  196.      * @return The Coordinated Variation Instance
  197.      */

  198.     public org.drip.execution.tradingtime.CoordinatedVariation coordinatedVariationConstraint()
  199.     {
  200.         return _cv;
  201.     }

  202.     /**
  203.      * Retrieve the Non Dimensional Cost Evolver
  204.      *
  205.      * @return The Non Dimensional Cost Evolver
  206.      */

  207.     public org.drip.execution.hjb.NonDimensionalCostEvolver evolver()
  208.     {
  209.         return _ndce;
  210.     }

  211.     /**
  212.      * Retrieve the Mean Variance Objective Utility Function
  213.      *
  214.      * @return The Mean Variance Objective Utility Function
  215.      */

  216.     public org.drip.execution.risk.MeanVarianceObjectiveUtility objectiveUtility()
  217.     {
  218.         return _mvou;
  219.     }

  220.     /**
  221.      * Compute The Coordinated Variation Trajectory Determinant Instance
  222.      *
  223.      * @return The Coordinated Variation Trajectory Determinant Instance
  224.      */

  225.     public org.drip.execution.adaptive.CoordinatedVariationTrajectoryDeterminant trajectoryDeterminant()
  226.     {
  227.         double dblExecutionSize = _os.size();

  228.         double dblReferenceLiquidity = _cv.referenceLiquidity();

  229.         double dblReferenceVolatility = _cv.referenceVolatility();

  230.         double dblRelaxationTime = _ndce.ornsteinUnlenbeckProcess().referenceRelaxationTime();

  231.         double dblMeanMarketUrgency = _cv.referenceVolatility() * java.lang.Math.sqrt (_mvou.riskAversion() /
  232.             dblReferenceLiquidity);

  233.         double dblTradeRateScale = dblExecutionSize / dblRelaxationTime;

  234.         try {
  235.             return new org.drip.execution.adaptive.CoordinatedVariationTrajectoryDeterminant
  236.                 (dblExecutionSize, dblRelaxationTime, dblReferenceLiquidity * dblExecutionSize *
  237.                     dblExecutionSize / dblTradeRateScale, dblTradeRateScale, dblMeanMarketUrgency,
  238.                         dblMeanMarketUrgency * dblRelaxationTime, dblReferenceLiquidity * dblExecutionSize /
  239.                             dblReferenceVolatility * java.lang.Math.pow (_os.maxExecutionTime(), -1.5));
  240.         } catch (java.lang.Exception e) {
  241.             e.printStackTrace();
  242.         }

  243.         return null;
  244.     }

  245.     /**
  246.      * Retrieve the Initial Non Dimensional Cost
  247.      *
  248.      * @param ms The Initial Market State
  249.      * @param dblTradeRateScale The Trade Rate Scale
  250.      *
  251.      * @return The Initial Non Dimensional Cost
  252.      */

  253.     public org.drip.execution.hjb.NonDimensionalCost initializeNonDimensionalCost (
  254.         final org.drip.execution.latent.MarketState ms,
  255.         final double dblTradeRateScale)
  256.     {
  257.         if (TRADE_RATE_ZERO_INITIALIZATION == _iTradeRateInitializer)
  258.             return org.drip.execution.hjb.NonDimensionalCostSystemic.Zero();

  259.         if (null == ms || !org.drip.numerical.common.NumberUtil.IsValid (dblTradeRateScale)) return null;

  260.         try {
  261.             org.drip.execution.strategy.ContinuousTradingTrajectory ctt =
  262.                 (org.drip.execution.strategy.ContinuousTradingTrajectory) new
  263.                     org.drip.execution.nonadaptive.ContinuousAlmgrenChriss (_os,
  264.                         org.drip.execution.dynamics.ArithmeticPriceEvolutionParametersBuilder.ReferenceCoordinatedVariation
  265.                         (_cv), _mvou).generate();

  266.             if (null == ctt) return null;

  267.             double dblNonDimensionalInstantTradeRate = ctt.tradeRate().evaluate (0.) / dblTradeRateScale;

  268.             double dblNonDimensionalCostSensitivity = java.lang.Math.exp (ms.liquidity()) *
  269.                 dblNonDimensionalInstantTradeRate;

  270.             return new org.drip.execution.hjb.NonDimensionalCostSystemic (0., dblNonDimensionalCostSensitivity,
  271.                 dblNonDimensionalCostSensitivity, dblNonDimensionalInstantTradeRate);
  272.         } catch (java.lang.Exception e) {
  273.             e.printStackTrace();
  274.         }

  275.         return null;
  276.     }

  277.     /**
  278.      * Generate the Continuous Coordinated Variation Dynamic Adaptive Trajectory
  279.      *
  280.      * @param aMS Array of Realized Market States
  281.      *
  282.      * @return The Continuous Coordinated Variation Dynamic Adaptive Trajectory
  283.      */

  284.     public org.drip.execution.adaptive.CoordinatedVariationDynamic adaptive (
  285.         final org.drip.execution.latent.MarketState[] aMS)
  286.     {
  287.         if (null == aMS) return null;

  288.         int iNumTimeNode = aMS.length;

  289.         if (1 >= iNumTimeNode) return null;

  290.         double dblExecutionSize = _os.size();

  291.         double dblReferenceLiquidity = _cv.referenceLiquidity();

  292.         double dblReferenceVolatility = _cv.referenceVolatility();

  293.         double dblRelaxationTime = _ndce.ornsteinUnlenbeckProcess().referenceRelaxationTime();

  294.         double dblNonDimensionalTimeIncrement = _os.maxExecutionTime() / (iNumTimeNode - 1) /
  295.             dblRelaxationTime;

  296.         double dblMeanMarketUrgency = dblReferenceVolatility * java.lang.Math.sqrt (_mvou.riskAversion() /
  297.             dblReferenceLiquidity);

  298.         org.drip.execution.hjb.NonDimensionalCost[] aNDC = new
  299.             org.drip.execution.hjb.NonDimensionalCost[iNumTimeNode];
  300.         double[] adblNonDimensionalScaledTradeRate = new double[iNumTimeNode];
  301.         double dblTradeRateScale = dblExecutionSize / dblRelaxationTime;
  302.         double[] adblNonDimensionalHoldings = new double[iNumTimeNode];
  303.         adblNonDimensionalScaledTradeRate[0] = 0.;
  304.         adblNonDimensionalHoldings[0] = 1.;

  305.         if (null == (aNDC[0] = initializeNonDimensionalCost (aMS[0], dblTradeRateScale))) return null;

  306.         for (int i = 1; i < iNumTimeNode; ++i) {
  307.             if (null == (aNDC[i] = _ndce.evolve (aNDC[i - 1], aMS[i], dblMeanMarketUrgency *
  308.                 dblRelaxationTime, (iNumTimeNode - i) * dblNonDimensionalTimeIncrement,
  309.                     dblNonDimensionalTimeIncrement)))
  310.                 return null;

  311.             adblNonDimensionalScaledTradeRate[i] = adblNonDimensionalHoldings[i - 1] *
  312.                 aNDC[i].nonDimensionalTradeRate();

  313.             adblNonDimensionalHoldings[i] = adblNonDimensionalHoldings[i - 1] -
  314.                 adblNonDimensionalScaledTradeRate[i] * dblNonDimensionalTimeIncrement;
  315.         }

  316.         try {
  317.             return new org.drip.execution.adaptive.CoordinatedVariationDynamic (new
  318.                 org.drip.execution.adaptive.CoordinatedVariationTrajectoryDeterminant (dblExecutionSize,
  319.                     dblRelaxationTime, dblReferenceLiquidity * dblExecutionSize * dblExecutionSize /
  320.                         dblTradeRateScale, dblTradeRateScale, dblMeanMarketUrgency, dblMeanMarketUrgency *
  321.                             dblRelaxationTime, dblReferenceLiquidity * dblExecutionSize /
  322.                                 dblReferenceVolatility * java.lang.Math.pow (_os.maxExecutionTime(), -1.5)),
  323.                                     adblNonDimensionalHoldings, adblNonDimensionalScaledTradeRate, aNDC);
  324.         } catch (java.lang.Exception e) {
  325.             e.printStackTrace();
  326.         }

  327.         return null;
  328.     }

  329.     /**
  330.      * Generate a Static, Non-adaptive Trading Trajectory Instance
  331.      *
  332.      * @return The Static, Non-adaptive Trading Trajectory Instance
  333.      */

  334.     public org.drip.execution.adaptive.CoordinatedVariationStatic nonAdaptive()
  335.     {
  336.         try {
  337.             return new org.drip.execution.adaptive.CoordinatedVariationStatic (trajectoryDeterminant(),
  338.                 (org.drip.execution.optimum.EfficientTradingTrajectoryContinuous) new
  339.                     org.drip.execution.nonadaptive.ContinuousAlmgrenChriss (_os,
  340.                         org.drip.execution.dynamics.ArithmeticPriceEvolutionParametersBuilder.ReferenceCoordinatedVariation
  341.                         (_cv), _mvou).generate());
  342.         } catch (java.lang.Exception e) {
  343.             e.printStackTrace();
  344.         }

  345.         return null;
  346.     }

  347.     /**
  348.      * Generate the Continuous Coordinated Variation Rolling Horizon Trajectory
  349.      *
  350.      * @param aMS Array of Realized Market States
  351.      *
  352.      * @return The Continuous Coordinated Variation Rolling Horizon Trajectory
  353.      */

  354.     public org.drip.execution.adaptive.CoordinatedVariationRollingHorizon rollingHorizon (
  355.         final org.drip.execution.latent.MarketState[] aMS)
  356.     {
  357.         if (null == aMS) return null;

  358.         int iNumTimeNode = aMS.length;
  359.         double[] adblNonDimensionalCost = 0 == iNumTimeNode ? null : new double[iNumTimeNode];
  360.         double[] adblNonDimensionalHoldings = 0 == iNumTimeNode ? null : new double[iNumTimeNode];
  361.         double[] adblNonDimensionalTradeRate = 0 == iNumTimeNode ? null : new double[iNumTimeNode];

  362.         if (0 == iNumTimeNode) return null;

  363.         double dblExecutionSize = _os.size();

  364.         double dblRiskAversion = _mvou.riskAversion();

  365.         double dblExecutionTime = _os.maxExecutionTime();

  366.         double dblReferenceLiquidity = _cv.referenceLiquidity();

  367.         double dblReferenceVolatility = _cv.referenceVolatility();

  368.         double dblRelaxationTime = _ndce.ornsteinUnlenbeckProcess().referenceRelaxationTime();

  369.         double dblMeanMarketUrgency = dblReferenceVolatility * java.lang.Math.sqrt (dblRiskAversion /
  370.             dblReferenceLiquidity);

  371.         double dblNonDimensionalTimeIncrement = dblExecutionTime / (iNumTimeNode - 1) / dblRelaxationTime;
  372.         double dblNonDimensionalExecutionTime = dblExecutionTime / dblRelaxationTime;
  373.         double dblTradeRateScale = dblExecutionSize / dblRelaxationTime;
  374.         adblNonDimensionalTradeRate[iNumTimeNode - 1] = 0.;
  375.         adblNonDimensionalHoldings[0] = 1.;
  376.         adblNonDimensionalCost[0] = 0.;

  377.         for (int i = 0; i < iNumTimeNode - 1; ++i) {
  378.             org.drip.execution.dynamics.LinearPermanentExpectationParameters lpep = realizedLPEP
  379.                 (aMS[i].liquidity());

  380.             if (null == lpep) return null;

  381.             try {
  382.                 double dblRealizedVolatility = lpep.arithmeticPriceDynamicsSettings().epochVolatility();

  383.                 org.drip.execution.strategy.ContinuousTradingTrajectory ctt =
  384.                     (org.drip.execution.strategy.ContinuousTradingTrajectory) new
  385.                         org.drip.execution.nonadaptive.ContinuousAlmgrenChriss (new
  386.                             org.drip.execution.strategy.OrderSpecification (adblNonDimensionalHoldings[i],
  387.                                 dblNonDimensionalExecutionTime - i * dblNonDimensionalTimeIncrement), lpep,
  388.                                     _mvou).generate();

  389.                 if (null == ctt) return null;

  390.                 adblNonDimensionalTradeRate[i] = ctt.tradeRate().evaluate (0.);

  391.                 adblNonDimensionalHoldings[i + 1] = adblNonDimensionalHoldings[i] -
  392.                     adblNonDimensionalTradeRate[i] * dblNonDimensionalTimeIncrement;
  393.                 adblNonDimensionalCost[i + 1] = adblNonDimensionalCost[i] + (dblRiskAversion *
  394.                     dblRealizedVolatility * dblRealizedVolatility * adblNonDimensionalHoldings[i] *
  395.                         adblNonDimensionalHoldings[i] +
  396.                             lpep.linearPermanentExpectation().epochLiquidityFunction().slope() *
  397.                                 adblNonDimensionalTradeRate[i] * adblNonDimensionalTradeRate[i]) *
  398.                                     dblNonDimensionalTimeIncrement;
  399.             } catch (java.lang.Exception e) {
  400.                 e.printStackTrace();

  401.                 return null;
  402.             }
  403.         }

  404.         try {
  405.             return new org.drip.execution.adaptive.CoordinatedVariationRollingHorizon (new
  406.                 org.drip.execution.adaptive.CoordinatedVariationTrajectoryDeterminant (dblExecutionSize,
  407.                     dblRelaxationTime, dblReferenceLiquidity * dblExecutionSize * dblExecutionSize /
  408.                         dblTradeRateScale, dblTradeRateScale, dblMeanMarketUrgency, dblMeanMarketUrgency *
  409.                             dblRelaxationTime, dblReferenceLiquidity * dblExecutionSize /
  410.                                 dblReferenceVolatility * java.lang.Math.pow (_os.maxExecutionTime(), -1.5)),
  411.                                     adblNonDimensionalHoldings, adblNonDimensionalTradeRate,
  412.                                         adblNonDimensionalCost);
  413.         } catch (java.lang.Exception e) {
  414.             e.printStackTrace();
  415.         }

  416.         return null;
  417.     }
  418. }