chebyshevAssociationBound(R1ToR1, boolean, R1ToR1, boolean) |  | 0% |  | 0% | 5 | 5 | 13 | 13 | 1 | 1 |
empiricalAnchorMoment(int, double, boolean) |  | 0% |  | 0% | 5 | 5 | 8 | 8 | 1 | 1 |
SingleSequenceAgnosticMetrics(double[], R1Univariate) |   | 88% |   | 75% | 3 | 7 | 3 | 24 | 0 | 1 |
markovUpperProbabilityBound(double, R1ToR1) |   | 79% |   | 64% | 5 | 8 | 2 | 11 | 0 | 1 |
weakLawAverageBounds(double) |   | 82% |   | 62% | 3 | 5 | 3 | 9 | 0 | 1 |
chebyshevBound(double) |   | 80% |   | 62% | 3 | 5 | 3 | 8 | 0 | 1 |
chebyshevCantelliBound(double) |   | 76% |   | 50% | 3 | 4 | 3 | 7 | 0 | 1 |
centralMomentBound(double, int) |   | 82% |   | 66% | 2 | 4 | 3 | 8 | 0 | 1 |
functionSequenceMetrics(R1ToR1) |   | 82% |   | 75% | 1 | 3 | 3 | 9 | 0 | 1 |
empiricalCentralMoment(int, boolean) |   | 86% |   | 66% | 2 | 4 | 1 | 8 | 0 | 1 |
empiricalRawMoment(int, boolean) |   | 88% |   | 83% | 1 | 4 | 1 | 7 | 0 | 1 |
populationDistribution() |  | 0% | | n/a | 1 | 1 | 1 | 1 | 1 | 1 |
populationMean() |  | 100% |  | 100% | 0 | 2 | 0 | 1 | 0 | 1 |
populationVariance() |  | 100% |  | 100% | 0 | 2 | 0 | 1 | 0 | 1 |
empiricalExpectation() |  | 100% | | n/a | 0 | 1 | 0 | 1 | 0 | 1 |
empiricalVariance() |  | 100% | | n/a | 0 | 1 | 0 | 1 | 0 | 1 |
isPositive() |  | 100% | | n/a | 0 | 1 | 0 | 1 | 0 | 1 |
sequence() |  | 100% | | n/a | 0 | 1 | 0 | 1 | 0 | 1 |