Class R1VasicekStochasticEvolver

java.lang.Object
Direct Known Subclasses:
LangevinEvolver, R1OrnsteinUhlenbeckStochasticEvolver

public class R1VasicekStochasticEvolver
extends R1CKLSStochasticEvolver
R1VasicekStochasticEvolver implements the R1 Vasicek Stochastic Evolver. The References are:

  • Doob, J. L. (1942): The Brownian Movement and Stochastic Equations Annals of Mathematics 43 (2) 351-369
  • Gardiner, C. W. (2009): Stochastic Methods: A Handbook for the Natural and Social Sciences 4th Edition Springer-Verlag
  • Kadanoff, L. P. (2000): Statistical Physics: Statics, Dynamics, and Re-normalization World Scientific
  • Karatzas, I., and S. E. Shreve (1991): Brownian Motion and Stochastic Calculus 2nd Edition Springer-Verlag
  • Risken, H., and F. Till (1996): The Fokker-Planck Equation – Methods of Solution and Applications Springer


Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • R1VasicekStochasticEvolver

      public R1VasicekStochasticEvolver​(double meanReversionSpeed, double meanReversionLevel, double volatility, R1StochasticDriver r1StochasticDriver) throws java.lang.Exception
      R1VasicekStochasticEvolver Constructor
      Parameters:
      meanReversionSpeed - The Mean Reversion Speed
      meanReversionLevel - The Mean Reversion Level
      volatility - The Volatility
      r1StochasticDriver - The Stochastic Driver
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • Wiener

      public static R1VasicekStochasticEvolver Wiener​(double meanReversionSpeed, double meanReversionLevel, double volatility, double timeWidth)
      Construct a Weiner Instance of R1VasicekStochasticEvolver Process
      Parameters:
      meanReversionSpeed - The Mean Reversion Speed
      meanReversionLevel - The Mean Reversion Level
      volatility - The Volatility
      timeWidth - Wiener Time Width
      Returns:
      Weiner Instance of R1VasicekStochasticEvolver Process
    • mean

      public double mean​(double x0, double t) throws java.lang.Exception
      Compute the Expected Value of x at a time t from a Starting Value x0
      Parameters:
      x0 - Starting Variate
      t - Time
      Returns:
      Expected Value of x
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
    • timeCovariance

      public double timeCovariance​(double x0, double s, double t) throws java.lang.Exception
      Compute the Time Co-variance of x across Time Values t and s
      Parameters:
      x0 - Starting Variate
      s - Time s
      t - Time t
      Returns:
      Time Co-variance of x
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
    • temporalPopulationCentralMeasures

      public PopulationCentralMeasures temporalPopulationCentralMeasures​(double x0, double t)
      Description copied from class: R1StochasticEvolver
      Estimate the Temporal Central Measures for the Underlier given the Delta 0 Starting PDF
      Overrides:
      temporalPopulationCentralMeasures in class R1StochasticEvolver
      Parameters:
      x0 - The X Anchor for the Delta Function
      t - The Forward Time
      Returns:
      The Temporal Central Measures for the Underlier
    • steadyStatePopulationCentralMeasures

      public PopulationCentralMeasures steadyStatePopulationCentralMeasures​(double x0)
      Description copied from class: R1StochasticEvolver
      Generate the Steady State Population Central Measures
      Overrides:
      steadyStatePopulationCentralMeasures in class R1StochasticEvolver
      Parameters:
      x0 - Starting Variate
      Returns:
      The Steady State Population Central Measures
    • aitSahaliaMLEAsymptote

      public double[][] aitSahaliaMLEAsymptote​(double intervalWidth)
      Construct the Ait-Sahalia Maximum Likelihood Estimation Sampling Interval Discreteness Error
      Parameters:
      intervalWidth - Sampling Interval Width
      Returns:
      The Ait-Sahalia Maximum Likelihood Estimation Sampling Interval Discreteness Error