Package org.drip.dynamics.meanreverting
Class R1VasicekStochasticEvolver
java.lang.Object
org.drip.dynamics.process.R1StochasticEvolver
org.drip.dynamics.meanreverting.R1CKLSStochasticEvolver
org.drip.dynamics.meanreverting.R1VasicekStochasticEvolver
- Direct Known Subclasses:
LangevinEvolver
,R1OrnsteinUhlenbeckStochasticEvolver
public class R1VasicekStochasticEvolver extends R1CKLSStochasticEvolver
R1VasicekStochasticEvolver implements the R1 Vasicek Stochastic Evolver. The References
are:
- Doob, J. L. (1942): The Brownian Movement and Stochastic Equations Annals of Mathematics 43 (2) 351-369
- Gardiner, C. W. (2009): Stochastic Methods: A Handbook for the Natural and Social Sciences 4th Edition Springer-Verlag
- Kadanoff, L. P. (2000): Statistical Physics: Statics, Dynamics, and Re-normalization World Scientific
- Karatzas, I., and S. E. Shreve (1991): Brownian Motion and Stochastic Calculus 2nd Edition Springer-Verlag
- Risken, H., and F. Till (1996): The Fokker-Planck Equation – Methods of Solution and Applications Springer
- Module = Product Core Module
- Library = Fixed Income Analytics
- Project = HJM, Hull White, LMM, and SABR Dynamic Evolution Models
- Package = Mean Reverting Stochastic Process Dynamics
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1VasicekStochasticEvolver(double meanReversionSpeed, double meanReversionLevel, double volatility, R1StochasticDriver r1StochasticDriver)
R1VasicekStochasticEvolver Constructor -
Method Summary
Modifier and Type Method Description double[][]
aitSahaliaMLEAsymptote(double intervalWidth)
Construct the Ait-Sahalia Maximum Likelihood Estimation Sampling Interval Discreteness Errordouble
mean(double x0, double t)
Compute the Expected Value of x at a time t from a Starting Value x0PopulationCentralMeasures
steadyStatePopulationCentralMeasures(double x0)
Generate the Steady State Population Central MeasuresPopulationCentralMeasures
temporalPopulationCentralMeasures(double x0, double t)
Estimate the Temporal Central Measures for the Underlier given the Delta 0 Starting PDFdouble
timeCovariance(double x0, double s, double t)
Compute the Time Co-variance of x across Time Values t and sstatic R1VasicekStochasticEvolver
Wiener(double meanReversionSpeed, double meanReversionLevel, double volatility, double timeWidth)
Construct a Weiner Instance of R1VasicekStochasticEvolver ProcessMethods inherited from class org.drip.dynamics.meanreverting.R1CKLSStochasticEvolver
cklsParameters, fokkerPlanckGenerator, Wiener
Methods inherited from class org.drip.dynamics.process.R1StochasticEvolver
driftFunction, evolve, futureValueDistribution, stochasticDriver, volatilityFunction
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1VasicekStochasticEvolver
public R1VasicekStochasticEvolver(double meanReversionSpeed, double meanReversionLevel, double volatility, R1StochasticDriver r1StochasticDriver) throws java.lang.ExceptionR1VasicekStochasticEvolver Constructor- Parameters:
meanReversionSpeed
- The Mean Reversion SpeedmeanReversionLevel
- The Mean Reversion Levelvolatility
- The Volatilityr1StochasticDriver
- The Stochastic Driver- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
Wiener
public static R1VasicekStochasticEvolver Wiener(double meanReversionSpeed, double meanReversionLevel, double volatility, double timeWidth)Construct a Weiner Instance of R1VasicekStochasticEvolver Process- Parameters:
meanReversionSpeed
- The Mean Reversion SpeedmeanReversionLevel
- The Mean Reversion Levelvolatility
- The VolatilitytimeWidth
- Wiener Time Width- Returns:
- Weiner Instance of R1VasicekStochasticEvolver Process
-
mean
public double mean(double x0, double t) throws java.lang.ExceptionCompute the Expected Value of x at a time t from a Starting Value x0- Parameters:
x0
- Starting Variatet
- Time- Returns:
- Expected Value of x
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
timeCovariance
public double timeCovariance(double x0, double s, double t) throws java.lang.ExceptionCompute the Time Co-variance of x across Time Values t and s- Parameters:
x0
- Starting Variates
- Time st
- Time t- Returns:
- Time Co-variance of x
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
temporalPopulationCentralMeasures
Description copied from class:R1StochasticEvolver
Estimate the Temporal Central Measures for the Underlier given the Delta 0 Starting PDF- Overrides:
temporalPopulationCentralMeasures
in classR1StochasticEvolver
- Parameters:
x0
- The X Anchor for the Delta Functiont
- The Forward Time- Returns:
- The Temporal Central Measures for the Underlier
-
steadyStatePopulationCentralMeasures
Description copied from class:R1StochasticEvolver
Generate the Steady State Population Central Measures- Overrides:
steadyStatePopulationCentralMeasures
in classR1StochasticEvolver
- Parameters:
x0
- Starting Variate- Returns:
- The Steady State Population Central Measures
-
aitSahaliaMLEAsymptote
public double[][] aitSahaliaMLEAsymptote(double intervalWidth)Construct the Ait-Sahalia Maximum Likelihood Estimation Sampling Interval Discreteness Error- Parameters:
intervalWidth
- Sampling Interval Width- Returns:
- The Ait-Sahalia Maximum Likelihood Estimation Sampling Interval Discreteness Error
-