Package org.drip.learning.svm
Class RdDecisionFunction
java.lang.Object
org.drip.function.definition.RdToR1
org.drip.learning.svm.RdDecisionFunction
- Direct Known Subclasses:
KernelRdDecisionFunction
,LinearRdDecisionFunction
public abstract class RdDecisionFunction extends RdToR1
RdDecisionFunction exposes the Rd Decision-Function Based SVM Functionality for
Classification and Regression.
The References are:
The References are:
- Shawe-Taylor, J., P. L. Bartlett, R. C. Williamson, and M. Anthony (1996): A Framework for Structural Risk Minimization, in: Proceedings of the 9th Annual Conference on Computational Learning Theory ACM New York 68-76
- Vapnik, V., and A. Chervonenkis (1974): Theory of Pattern Recognition (in Russian) Nauka Moscow USSR
- Vapnik, V. (1995): The Nature of Statistical Learning Springer-Verlag New York
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Kernel SVM Decision Function Operator
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description RdDecisionFunction(RdGeneralizedVector rdPredictor, RdNormed rdInverseMargin, double[] adblInverseMarginWeight, double dblB)
RdDecisionFunction Constructor -
Method Summary
Modifier and Type Method Description short
classify(double[] adblX)
Classify the Specified Multi-dimensional PointDecisionFunctionOperatorBounds
entropyNumberUpperBounds(DiagonalScalingOperator dsoFactorizer, double dblFeatureSpaceMaureyConstant)
Compute the Entropy Number Upper Bounds Instance for the Specified InputsRdNormed
inverseMarginSpace()
Retrieve the Inverse Margin Weight Metric Vector Spacedouble[]
inverseMarginWeights()
Retrieve the Decision Kernel Weightsdouble
logEntropyNumberAsymptote(DiagonalScalingOperator dsoFactorizer)
Compute the Decision Function's Asymptotic Exponent for the Entropy Numberdouble
offset()
Retrieve the Offsetabstract boolean
optimizeClassificationHyperplane(short[] asEmpirical, double dblMargin, double dblInverseWidthNormConstraint)
Optimize the Hyper-plane for the Purposes of Classificationabstract boolean
optimizeRegressionHyperplane(double[] adblEmpirical, double dblMargin, double dblInverseWidthNormConstraint)
Optimize the Hyper-plane for the Purposes of RegressionRdGeneralizedVector
predictorSpace()
Retrieve the Input Predictor Metric Vector Spacedouble
regress(double[] adblX)
Regress on the Specified Multi-dimensional PointMethods inherited from class org.drip.function.definition.RdToR1
conditionNumber, conditionNumberL2, conditionNumberLInfinity, conditionNumberLp, derivative, differential, dimension, evaluate, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInput
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
RdDecisionFunction
public RdDecisionFunction(RdGeneralizedVector rdPredictor, RdNormed rdInverseMargin, double[] adblInverseMarginWeight, double dblB) throws java.lang.ExceptionRdDecisionFunction Constructor- Parameters:
rdPredictor
- The R^d Metric Input Predictor SpacerdInverseMargin
- The Inverse Margin Weights R^d SpaceadblInverseMarginWeight
- Array of Inverse Margin WeightsdblB
- The Kernel Offset- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
predictorSpace
Retrieve the Input Predictor Metric Vector Space- Returns:
- The Input Predictor Metric Vector Space
-
inverseMarginSpace
Retrieve the Inverse Margin Weight Metric Vector Space- Returns:
- The Inverse Margin Weight Metric Vector Space
-
inverseMarginWeights
public double[] inverseMarginWeights()Retrieve the Decision Kernel Weights- Returns:
- The Decision Kernel Weights
-
offset
public double offset()Retrieve the Offset- Returns:
- The Offset
-
classify
public short classify(double[] adblX) throws java.lang.ExceptionClassify the Specified Multi-dimensional Point- Parameters:
adblX
- The Multi-dimensional Input Point- Returns:
- +1/-1 Boolean Space Output Equivalents
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
regress
public double regress(double[] adblX) throws java.lang.ExceptionRegress on the Specified Multi-dimensional Point- Parameters:
adblX
- The Multi-dimensional Input Point- Returns:
- The Regression Output
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
entropyNumberUpperBounds
public DecisionFunctionOperatorBounds entropyNumberUpperBounds(DiagonalScalingOperator dsoFactorizer, double dblFeatureSpaceMaureyConstant)Compute the Entropy Number Upper Bounds Instance for the Specified Inputs- Parameters:
dsoFactorizer
- The Factorizing Diagonal Scaling OperatordblFeatureSpaceMaureyConstant
- The Feature Space Maurey Constant- Returns:
- The Entropy Number Upper Bounds Instance
-
logEntropyNumberAsymptote
public double logEntropyNumberAsymptote(DiagonalScalingOperator dsoFactorizer) throws java.lang.ExceptionCompute the Decision Function's Asymptotic Exponent for the Entropy Number- Parameters:
dsoFactorizer
- The Factorizing Diagonal Scaling Operator- Returns:
- The Decision Function's Asymptotic Exponent for the Entropy Number
- Throws:
java.lang.Exception
- Thrown if the Asymptotoc Exponent cannot be computed
-
optimizeRegressionHyperplane
public abstract boolean optimizeRegressionHyperplane(double[] adblEmpirical, double dblMargin, double dblInverseWidthNormConstraint)Optimize the Hyper-plane for the Purposes of Regression- Parameters:
adblEmpirical
- The Empirical Observation ArraydblMargin
- The Optimization MargindblInverseWidthNormConstraint
- The Inverse Width Norm Constraint- Returns:
- TRUE - The Hyper-plane has been successfully Optimized for Regression
-
optimizeClassificationHyperplane
public abstract boolean optimizeClassificationHyperplane(short[] asEmpirical, double dblMargin, double dblInverseWidthNormConstraint)Optimize the Hyper-plane for the Purposes of Classification- Parameters:
asEmpirical
- The Empirical Observation ArraydblMargin
- The Optimization MargindblInverseWidthNormConstraint
- The Inverse Width Norm Constraint- Returns:
- TRUE - The Hyper-plane has been successfully Optimized for Classification
-