Package org.drip.learning.svm
Class KernelRdDecisionFunction
java.lang.Object
org.drip.function.definition.RdToR1
org.drip.learning.svm.RdDecisionFunction
org.drip.learning.svm.KernelRdDecisionFunction
public abstract class KernelRdDecisionFunction extends RdDecisionFunction
KernelRdDecisionFunction implements the Kernel-based Rd Decision Function-Based SVM
Functionality for Classification and Regression.
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Kernel SVM Decision Function Operator
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description KernelRdDecisionFunction(RdNormed rdInverseMargin, double[] adblInverseMarginWeight, double dblB, SymmetricRdToNormedRdKernel kernel, double[][] aadblKernelPredictorPivot)
KernelRdDecisionFunction Constructor -
Method Summary
Modifier and Type Method Description double
evaluate(double[] adblX)
Evaluate for the given Input VariatesSymmetricRdToNormedRdKernel
kernel()
Retrieve the Decision Kerneldouble[][]
kernelPredictorPivot()
Retrieve the Decision Kernel Predictor Pivot NodesMethods inherited from class org.drip.learning.svm.RdDecisionFunction
classify, entropyNumberUpperBounds, inverseMarginSpace, inverseMarginWeights, logEntropyNumberAsymptote, offset, optimizeClassificationHyperplane, optimizeRegressionHyperplane, predictorSpace, regress
Methods inherited from class org.drip.function.definition.RdToR1
conditionNumber, conditionNumberL2, conditionNumberLInfinity, conditionNumberLp, derivative, differential, dimension, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInput
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
KernelRdDecisionFunction
public KernelRdDecisionFunction(RdNormed rdInverseMargin, double[] adblInverseMarginWeight, double dblB, SymmetricRdToNormedRdKernel kernel, double[][] aadblKernelPredictorPivot) throws java.lang.ExceptionKernelRdDecisionFunction Constructor- Parameters:
rdInverseMargin
- The Inverse Margin Weights R^d SpaceadblInverseMarginWeight
- Array of Inverse Margin WeightsdblB
- The Kernel Offsetkernel
- The KernelaadblKernelPredictorPivot
- Array of the Kernel R^d Predictor Pivot Nodes- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
evaluate
public double evaluate(double[] adblX) throws java.lang.ExceptionDescription copied from class:RdToR1
Evaluate for the given Input Variates -
kernel
Retrieve the Decision Kernel- Returns:
- The Decision Kernel
-
kernelPredictorPivot
public double[][] kernelPredictorPivot()Retrieve the Decision Kernel Predictor Pivot Nodes- Returns:
- The Decision Kernel Predictor Pivot Nodes
-