Package org.drip.measure.chisquare
Class R1CentralWilsonHilferty
java.lang.Object
org.drip.measure.continuous.R1Univariate
org.drip.measure.chisquare.R1WilsonHilferty
org.drip.measure.chisquare.R1CentralWilsonHilferty
public class R1CentralWilsonHilferty extends R1WilsonHilferty
R1CentralWilsonHilferty implements the Normal Proxy Version for the R1 Chi-Square
Distribution using the Wilson-Hilferty Transfomation. The References are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Backstrom, T., and J. Fischer (2018): Fast Randomization for Distributed Low Bit-rate Coding of Speech and Audio IEEE/ACM Transactions on Audio, Speech, and Language Processing 26 (1) 19-30
- Chi-Squared Distribution (2019): Chi-Squared Function https://en.wikipedia.org/wiki/Chi-squared_distribution
- Johnson, N. L., S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions 2nd Edition John Wiley and Sons
- National Institute of Standards and Technology (2019): Chi-Squared Distribution https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd Continuous/Discrete Probability Measures
- Package = Chi-Square Distribution Implementation/Properties
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description doubleinverseTransform(double wilsonHilferty)Transform the Wilson-Hilferty Variate into xdoublerandom()Generate a Random Variable corresponding to the Distributionstatic R1CentralWilsonHilfertyStandard(int degreesOfFreedom)Construct a Standard Instance of R1CentralWilsonHilfertydoubletransform(double x)Transform x into the Wilson-Hilferty VariateMethods inherited from class org.drip.measure.chisquare.R1WilsonHilferty
cumulative, degreesOfFreedom, density, excessKurtosis, invCumulative, mean, median, mode, momentGeneratingFunction, probabilityGeneratingFunction, r1UnivariateNormal, skewness, support, varianceMethods inherited from class org.drip.measure.continuous.R1Univariate
bPOE, centralMoment, cvar, differentialEntropy, expectedShortfall, fisherInformation, histogram, incremental, iqr, kullbackLeiblerDivergence, nonCentralMoment, populationCentralMeasures, quantile, randomArray, supported, tukeyAnomaly, tukeyCriterionMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
Standard
Construct a Standard Instance of R1CentralWilsonHilferty- Parameters:
degreesOfFreedom- Degrees of Freedom- Returns:
- Standard Instance of R1CentralWilsonHilferty
-
transform
public double transform(double x)Description copied from class:R1WilsonHilfertyTransform x into the Wilson-Hilferty Variate- Specified by:
transformin classR1WilsonHilferty- Parameters:
x- X- Returns:
- The Wilson-Hilferty Variate
-
inverseTransform
public double inverseTransform(double wilsonHilferty)Description copied from class:R1WilsonHilfertyTransform the Wilson-Hilferty Variate into x- Specified by:
inverseTransformin classR1WilsonHilferty- Parameters:
wilsonHilferty- The Wilson-Hilferty Variate- Returns:
- The Wilson-Hilferty Variate transformed back to x
-
random
public double random() throws java.lang.ExceptionDescription copied from class:R1UnivariateGenerate a Random Variable corresponding to the Distribution- Overrides:
randomin classR1Univariate- Returns:
- Random Variable corresponding to the Distribution
- Throws:
java.lang.Exception- Thrown if the Random Instance cannot be estimated
-