Package org.drip.measure.chisquare
Class R1WilsonHilferty
java.lang.Object
org.drip.measure.continuous.R1Univariate
org.drip.measure.chisquare.R1WilsonHilferty
- Direct Known Subclasses:
R1CentralWilsonHilferty,R1NonCentralWilsonHaferty
public abstract class R1WilsonHilferty extends R1Univariate
R1CentralWilsonHilferty implements the Normal Proxy Version for the R1 Chi-Square
Distribution using the Wilson-Hilferty Transformation. The References are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Backstrom, T., and J. Fischer (2018): Fast Randomization for Distributed Low Bit-rate Coding of Speech and Audio IEEE/ACM Transactions on Audio, Speech, and Language Processing 26 (1) 19-30
- Chi-Squared Distribution (2019): Chi-Squared Function https://en.wikipedia.org/wiki/Chi-squared_distribution
- Johnson, N. L., S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions 2nd Edition John Wiley and Sons
- National Institute of Standards and Technology (2019): Chi-Squared Distribution https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd Continuous/Discrete Probability Measures
- Package = Chi-Square Distribution Implementation/Properties
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description doublecumulative(double t)Compute the cumulative under the distribution to the given valuedoubledegreesOfFreedom()Retrieve the Degrees of Freedomdoubledensity(double t)Compute the Density under the Distribution at the given VariatedoubleexcessKurtosis()Retrieve the Excess Kurtosis of the DistributiondoubleinvCumulative(double y)Compute the inverse cumulative under the distribution corresponding to the given valueabstract doubleinverseTransform(double wilsonHilferty)Transform the Wilson-Hilferty Variate into xdoublemean()Retrieve the Mean of the Distributiondoublemedian()Retrieve the Median of the Distributiondoublemode()Retrieve the Mode of the DistributionR1ToR1momentGeneratingFunction()Construct the Moment Generating FunctionR1ToR1probabilityGeneratingFunction()Construct the Probability Generating FunctionR1UnivariateNormalr1UnivariateNormal()Retrieve the R1 Univariate Normaldoubleskewness()Retrieve the Skewness of the Distributiondouble[]support()Lay out the Support of the PDF Rangeabstract doubletransform(double x)Transform x into the Wilson-Hilferty Variatedoublevariance()Retrieve the Variance of the DistributionMethods inherited from class org.drip.measure.continuous.R1Univariate
bPOE, centralMoment, cvar, differentialEntropy, expectedShortfall, fisherInformation, histogram, incremental, iqr, kullbackLeiblerDivergence, nonCentralMoment, populationCentralMeasures, quantile, random, randomArray, supported, tukeyAnomaly, tukeyCriterionMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
degreesOfFreedom
public double degreesOfFreedom()Retrieve the Degrees of Freedom- Returns:
- The Degrees of Freedom
-
r1UnivariateNormal
Retrieve the R1 Univariate Normal- Returns:
- The R1 Univariate Normal
-
transform
public abstract double transform(double x)Transform x into the Wilson-Hilferty Variate- Parameters:
x- X- Returns:
- The Wilson-Hilferty Variate
-
inverseTransform
public abstract double inverseTransform(double wilsonHilferty)Transform the Wilson-Hilferty Variate into x- Parameters:
wilsonHilferty- The Wilson-Hilferty Variate- Returns:
- The Wilson-Hilferty Variate transformed back to x
-
support
public double[] support()Description copied from class:R1UnivariateLay out the Support of the PDF Range- Specified by:
supportin classR1Univariate- Returns:
- Support of the PDF Range
-
density
public double density(double t) throws java.lang.ExceptionDescription copied from class:R1UnivariateCompute the Density under the Distribution at the given Variate- Specified by:
densityin classR1Univariate- Parameters:
t- Variate at which the Density needs to be computed- Returns:
- The Density
- Throws:
java.lang.Exception- Thrown if the input is invalid
-
cumulative
public double cumulative(double t) throws java.lang.ExceptionDescription copied from class:R1UnivariateCompute the cumulative under the distribution to the given value- Specified by:
cumulativein classR1Univariate- Parameters:
t- Variate to which the cumulative is to be computed- Returns:
- The cumulative
- Throws:
java.lang.Exception- Thrown if the inputs are invalid
-
invCumulative
public double invCumulative(double y) throws java.lang.ExceptionDescription copied from class:R1UnivariateCompute the inverse cumulative under the distribution corresponding to the given value- Overrides:
invCumulativein classR1Univariate- Parameters:
y- Value corresponding to which the inverse cumulative is to be computed- Returns:
- The inverse cumulative
- Throws:
java.lang.Exception- Thrown if the Input is invalid
-
mean
public double mean() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Mean of the Distribution- Specified by:
meanin classR1Univariate- Returns:
- The Mean of the Distribution
- Throws:
java.lang.Exception- Thrown if the Mean cannot be estimated
-
median
public double median() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Median of the Distribution- Overrides:
medianin classR1Univariate- Returns:
- The Median of the Distribution
- Throws:
java.lang.Exception- Thrown if the Median cannot be estimated
-
mode
public double mode() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Mode of the Distribution- Overrides:
modein classR1Univariate- Returns:
- The Mode of the Distribution
- Throws:
java.lang.Exception- Thrown if the Mode cannot be estimated
-
variance
public double variance() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Variance of the Distribution- Specified by:
variancein classR1Univariate- Returns:
- The Variance of the Distribution
- Throws:
java.lang.Exception- Thrown if the Variance cannot be estimated
-
skewness
public double skewness() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Skewness of the Distribution- Overrides:
skewnessin classR1Univariate- Returns:
- The Skewness of the Distribution
- Throws:
java.lang.Exception- Thrown if the Skewness cannot be estimated
-
excessKurtosis
public double excessKurtosis() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Excess Kurtosis of the Distribution- Overrides:
excessKurtosisin classR1Univariate- Returns:
- The Excess Kurtosis of the Distribution
- Throws:
java.lang.Exception- Thrown if the Skewness cannot be estimated
-
momentGeneratingFunction
Description copied from class:R1UnivariateConstruct the Moment Generating Function- Overrides:
momentGeneratingFunctionin classR1Univariate- Returns:
- The Moment Generating Function
-
probabilityGeneratingFunction
Description copied from class:R1UnivariateConstruct the Probability Generating Function- Overrides:
probabilityGeneratingFunctionin classR1Univariate- Returns:
- The Probability Generating Function
-