Package org.drip.measure.chisquare
Class R1WilsonHilferty
java.lang.Object
org.drip.measure.continuous.R1Univariate
org.drip.measure.chisquare.R1WilsonHilferty
- Direct Known Subclasses:
R1CentralWilsonHilferty
,R1NonCentralWilsonHaferty
public abstract class R1WilsonHilferty extends R1Univariate
R1CentralWilsonHilferty implements the Normal Proxy Version for the R1 Chi-Square
Distribution using the Wilson-Hilferty Transformation. The References are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Backstrom, T., and J. Fischer (2018): Fast Randomization for Distributed Low Bit-rate Coding of Speech and Audio IEEE/ACM Transactions on Audio, Speech, and Language Processing 26 (1) 19-30
- Chi-Squared Distribution (2019): Chi-Squared Function https://en.wikipedia.org/wiki/Chi-squared_distribution
- Johnson, N. L., S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions 2nd Edition John Wiley and Sons
- National Institute of Standards and Technology (2019): Chi-Squared Distribution https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd Continuous/Discrete Probability Measures
- Package = Chi-Square Distribution Implementation/Properties
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description double
cumulative(double t)
Compute the cumulative under the distribution to the given valuedouble
degreesOfFreedom()
Retrieve the Degrees of Freedomdouble
density(double t)
Compute the Density under the Distribution at the given Variatedouble
excessKurtosis()
Retrieve the Excess Kurtosis of the Distributiondouble
invCumulative(double y)
Compute the inverse cumulative under the distribution corresponding to the given valueabstract double
inverseTransform(double wilsonHilferty)
Transform the Wilson-Hilferty Variate into xdouble
mean()
Retrieve the Mean of the Distributiondouble
median()
Retrieve the Median of the Distributiondouble
mode()
Retrieve the Mode of the DistributionR1ToR1
momentGeneratingFunction()
Construct the Moment Generating FunctionR1ToR1
probabilityGeneratingFunction()
Construct the Probability Generating FunctionR1UnivariateNormal
r1UnivariateNormal()
Retrieve the R1 Univariate Normaldouble
skewness()
Retrieve the Skewness of the Distributiondouble[]
support()
Lay out the Support of the PDF Rangeabstract double
transform(double x)
Transform x into the Wilson-Hilferty Variatedouble
variance()
Retrieve the Variance of the DistributionMethods inherited from class org.drip.measure.continuous.R1Univariate
bPOE, centralMoment, cvar, differentialEntropy, expectedShortfall, fisherInformation, histogram, incremental, iqr, kullbackLeiblerDivergence, nonCentralMoment, populationCentralMeasures, quantile, random, randomArray, supported, tukeyAnomaly, tukeyCriterion
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
degreesOfFreedom
public double degreesOfFreedom()Retrieve the Degrees of Freedom- Returns:
- The Degrees of Freedom
-
r1UnivariateNormal
Retrieve the R1 Univariate Normal- Returns:
- The R1 Univariate Normal
-
transform
public abstract double transform(double x)Transform x into the Wilson-Hilferty Variate- Parameters:
x
- X- Returns:
- The Wilson-Hilferty Variate
-
inverseTransform
public abstract double inverseTransform(double wilsonHilferty)Transform the Wilson-Hilferty Variate into x- Parameters:
wilsonHilferty
- The Wilson-Hilferty Variate- Returns:
- The Wilson-Hilferty Variate transformed back to x
-
support
public double[] support()Description copied from class:R1Univariate
Lay out the Support of the PDF Range- Specified by:
support
in classR1Univariate
- Returns:
- Support of the PDF Range
-
density
public double density(double t) throws java.lang.ExceptionDescription copied from class:R1Univariate
Compute the Density under the Distribution at the given Variate- Specified by:
density
in classR1Univariate
- Parameters:
t
- Variate at which the Density needs to be computed- Returns:
- The Density
- Throws:
java.lang.Exception
- Thrown if the input is invalid
-
cumulative
public double cumulative(double t) throws java.lang.ExceptionDescription copied from class:R1Univariate
Compute the cumulative under the distribution to the given value- Specified by:
cumulative
in classR1Univariate
- Parameters:
t
- Variate to which the cumulative is to be computed- Returns:
- The cumulative
- Throws:
java.lang.Exception
- Thrown if the inputs are invalid
-
invCumulative
public double invCumulative(double y) throws java.lang.ExceptionDescription copied from class:R1Univariate
Compute the inverse cumulative under the distribution corresponding to the given value- Overrides:
invCumulative
in classR1Univariate
- Parameters:
y
- Value corresponding to which the inverse cumulative is to be computed- Returns:
- The inverse cumulative
- Throws:
java.lang.Exception
- Thrown if the Input is invalid
-
mean
public double mean() throws java.lang.ExceptionDescription copied from class:R1Univariate
Retrieve the Mean of the Distribution- Specified by:
mean
in classR1Univariate
- Returns:
- The Mean of the Distribution
- Throws:
java.lang.Exception
- Thrown if the Mean cannot be estimated
-
median
public double median() throws java.lang.ExceptionDescription copied from class:R1Univariate
Retrieve the Median of the Distribution- Overrides:
median
in classR1Univariate
- Returns:
- The Median of the Distribution
- Throws:
java.lang.Exception
- Thrown if the Median cannot be estimated
-
mode
public double mode() throws java.lang.ExceptionDescription copied from class:R1Univariate
Retrieve the Mode of the Distribution- Overrides:
mode
in classR1Univariate
- Returns:
- The Mode of the Distribution
- Throws:
java.lang.Exception
- Thrown if the Mode cannot be estimated
-
variance
public double variance() throws java.lang.ExceptionDescription copied from class:R1Univariate
Retrieve the Variance of the Distribution- Specified by:
variance
in classR1Univariate
- Returns:
- The Variance of the Distribution
- Throws:
java.lang.Exception
- Thrown if the Variance cannot be estimated
-
skewness
public double skewness() throws java.lang.ExceptionDescription copied from class:R1Univariate
Retrieve the Skewness of the Distribution- Overrides:
skewness
in classR1Univariate
- Returns:
- The Skewness of the Distribution
- Throws:
java.lang.Exception
- Thrown if the Skewness cannot be estimated
-
excessKurtosis
public double excessKurtosis() throws java.lang.ExceptionDescription copied from class:R1Univariate
Retrieve the Excess Kurtosis of the Distribution- Overrides:
excessKurtosis
in classR1Univariate
- Returns:
- The Excess Kurtosis of the Distribution
- Throws:
java.lang.Exception
- Thrown if the Skewness cannot be estimated
-
momentGeneratingFunction
Description copied from class:R1Univariate
Construct the Moment Generating Function- Overrides:
momentGeneratingFunction
in classR1Univariate
- Returns:
- The Moment Generating Function
-
probabilityGeneratingFunction
Description copied from class:R1Univariate
Construct the Probability Generating Function- Overrides:
probabilityGeneratingFunction
in classR1Univariate
- Returns:
- The Probability Generating Function
-