Package org.drip.numerical.linearsolver
Class RyabenkiiTsynkovScheme
java.lang.Object
org.drip.numerical.linearsolver.TridiagonalScheme
org.drip.numerical.linearsolver.PeriodicTridiagonalScheme
org.drip.numerical.linearsolver.RyabenkiiTsynkovScheme
public class RyabenkiiTsynkovScheme extends PeriodicTridiagonalScheme
RyabenkiiTsynkovScheme implements the O(n) solver for a Tridiagonal Matrix with Periodic Boundary
Conditions. The References are:
- Batista, M., and A. R. A. Ibrahim-Karawia (2009): The use of Sherman-Morrison-Woodbury formula to solve cyclic block tridiagonal and cyclic block penta-diagonal linear systems of equations Applied Mathematics of Computation 210 (2) 558-563
- Datta, B. N. (2010): Numerical Linear Algebra and Applications 2nd Edition SIAM Philadelphia, PA
- Gallopoulos, E., B. Phillippe, and A. H. Sameh (2016): Parallelism in Matrix Computations Spring Berlin, Germany
- Ryaben’kii, V. S., and S. V. Tsynkov (2006): Theoretical Introduction to Numerical Analysis Wolters Kluwer Aalphen aan den Rijn, Netherlands
- Wikipedia (2024): Tridiagonal Matrix Algorithm https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities
- Package = Linear Algebra Matrix Transform Library
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description double[]solve()Solve the Tridiagonal System given the RHSstatic RyabenkiiTsynkovSchemeStandard(double[][] r2Array, double[] rhsArray)Construct a Standard Instance of RyabenkiiTsynkovSchemedouble[][]tridiagonalMatrix()Construct the Common U/V Tridiagonal Matrixdouble[]uRHSArray()Construct theURHS Arraydouble[]uSolutionArray()Compute the U Solution Arraydouble[]uvSolver()Compute the Solution Array based on U/V Schemedouble[]vRHSArray()Construct theVRHS Arraydouble[]vSolutionArray()Compute the V Solution ArrayMethods inherited from class org.drip.numerical.linearsolver.TridiagonalScheme
matrix, rhsArrayMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
Standard
Construct a Standard Instance of RyabenkiiTsynkovScheme- Parameters:
r2Array- R2 ArrayrhsArray- RHS Array- Returns:
- Standard Instance of RyabenkiiTsynkovScheme
-
tridiagonalMatrix
public double[][] tridiagonalMatrix()Construct the Common U/V Tridiagonal Matrix- Returns:
- Common U/V Tridiagonal Matrix
-
uRHSArray
public double[] uRHSArray()Construct theURHS Array- Returns:
URHS Array
-
vRHSArray
public double[] vRHSArray()Construct theVRHS Array- Returns:
VRHS Array
-
uSolutionArray
public double[] uSolutionArray()Compute the U Solution Array- Returns:
- U Solution Array
-
vSolutionArray
public double[] vSolutionArray()Compute the V Solution Array- Returns:
- V Solution Array
-
uvSolver
public double[] uvSolver()Compute the Solution Array based on U/V Scheme- Returns:
- Solution Array
-
solve
public double[] solve()Solve the Tridiagonal System given the RHS- Specified by:
solvein classTridiagonalScheme- Returns:
- The Solution
-