Package org.drip.sequence.custom
Class GlivenkoCantelliFunctionSupremum
java.lang.Object
org.drip.function.definition.RdToR1
org.drip.sequence.functional.MultivariateRandom
org.drip.sequence.custom.GlivenkoCantelliFunctionSupremum
- All Implemented Interfaces:
SeparableMultivariateRandom
public class GlivenkoCantelliFunctionSupremum extends MultivariateRandom implements SeparableMultivariateRandom
GlivenkoCantelliFunctionSupremum contains the Implementation of the Supremum Class Objective
Function dependent on Multivariate Random Variables where the Multivariate Function is a Linear
Combination of Bounded Univariate Functions acting on each Random Variate.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Custom
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description GlivenkoCantelliFunctionSupremum(FunctionSupremumUnivariateRandom fsur, double[] adblWeight)
GlivenkoCantelliFunctionSupremum Constructor -
Method Summary
Modifier and Type Method Description static GlivenkoCantelliFunctionSupremum
Create(FunctionSupremumUnivariateRandom fsur, int iNumSample)
Construct an Instance of GlivenkoCantelliFunctionSupremum from the Sampleint
dimension()
Retrieve the Dimension of the Input Variatedouble
evaluate(double[] adblVariate)
Evaluate for the given Input VariatesFunctionSupremumUnivariateRandom
separableUnivariateRandom()
Retrieve the Supremum Univariate Random Functiondouble
targetVariateVariance(int iTargetVariateIndex)
Compute the Variance associated with the Target Variate Functiondouble[]
weights()
Retrieve the WeightsMethods inherited from class org.drip.sequence.functional.MultivariateRandom
conditionalTargetVariateMetrics, conditionalTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, unconditionalTargetVariateMetrics
Methods inherited from class org.drip.function.definition.RdToR1
conditionNumber, conditionNumberL2, conditionNumberLInfinity, conditionNumberLp, derivative, differential, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInput
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
GlivenkoCantelliFunctionSupremum
public GlivenkoCantelliFunctionSupremum(FunctionSupremumUnivariateRandom fsur, double[] adblWeight) throws java.lang.ExceptionGlivenkoCantelliFunctionSupremum Constructor- Parameters:
fsur
- The Supremum Univariate Random FunctionadblWeight
- Array of Variable Weights- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
Create
public static final GlivenkoCantelliFunctionSupremum Create(FunctionSupremumUnivariateRandom fsur, int iNumSample)Construct an Instance of GlivenkoCantelliFunctionSupremum from the Sample- Parameters:
fsur
- The Supremum Univariate Random FunctioniNumSample
- Number of Empirical Samples- Returns:
- The GlivenkoCantelliFunctionSupremum Instance
-
separableUnivariateRandom
Retrieve the Supremum Univariate Random Function- Returns:
- The Supremum Univariate Random Function
-
weights
public double[] weights()Retrieve the Weights- Returns:
- The Weights
-
dimension
public int dimension()Description copied from class:RdToR1
Retrieve the Dimension of the Input Variate -
evaluate
public double evaluate(double[] adblVariate) throws java.lang.ExceptionDescription copied from class:RdToR1
Evaluate for the given Input Variates -
targetVariateVariance
public double targetVariateVariance(int iTargetVariateIndex) throws java.lang.ExceptionDescription copied from interface:SeparableMultivariateRandom
Compute the Variance associated with the Target Variate Function- Specified by:
targetVariateVariance
in interfaceSeparableMultivariateRandom
- Parameters:
iTargetVariateIndex
- The Target Variate Index- Returns:
- Variance associated with the Target Variate Function
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-