Package org.drip.sequence.functional
Interface SeparableMultivariateRandom
- All Known Implementing Classes:
GlivenkoCantelliFunctionSupremum
,GlivenkoCantelliUniformDeviation
public interface SeparableMultivariateRandom
SeparableMultivariateRandom exposes the Variance of the Objective Function dependent on
Multivariate Random Variables where the Multivariate Function is a Linear Combination of Bounded
Univariate Functions acting on each Random Variate.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Functional
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description double
targetVariateVariance(int iTargetVariateIndex)
Compute the Variance associated with the Target Variate Function
-
Method Details
-
targetVariateVariance
double targetVariateVariance(int iTargetVariateIndex) throws java.lang.ExceptionCompute the Variance associated with the Target Variate Function- Parameters:
iTargetVariateIndex
- The Target Variate Index- Returns:
- Variance associated with the Target Variate Function
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-