Package org.drip.sequence.custom
Class GlivenkoCantelliUniformDeviation
java.lang.Object
org.drip.function.definition.RdToR1
org.drip.sequence.functional.MultivariateRandom
org.drip.sequence.functional.BoundedMultivariateRandom
org.drip.sequence.custom.GlivenkoCantelliUniformDeviation
- All Implemented Interfaces:
SeparableMultivariateRandom
public class GlivenkoCantelliUniformDeviation extends BoundedMultivariateRandom implements SeparableMultivariateRandom
GlivenkoCantelliUniformDeviation contains the Implementation of the Bounded Objective Function
dependent on Multivariate Random Variables where the Multivariate Function is a Linear Combination of
Bounded Univariate Functions acting on each Random Variate.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Custom
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description GlivenkoCantelliUniformDeviation(BoundedIdempotentUnivariateRandom biur, double[] adblWeight)GlivenkoCantelliUniformDeviation Constructor -
Method Summary
Modifier and Type Method Description static GlivenkoCantelliUniformDeviationCreate(BoundedIdempotentUnivariateRandom biur, int iNumSample)GlivenkoCantelliUniformDeviation Constructorintdimension()Retrieve the Dimension of the Input Variatedoubleevaluate(double[] adblVariate)Evaluate for the given Input VariatesBoundedIdempotentUnivariateRandomseparableUnivariateRandom()Retrieve the Separable Bounded Idempotent Univariate Random FunctiondoubletargetVariateVariance(int iTargetVariateIndex)Compute the Variance associated with the Target Variate FunctiondoubletargetVariateVarianceBound(int iTargetVariateIndex)Retrieve the Maximal Agnostic Variance Bound over the Non-target Variate Space for the Target Variatedouble[]weights()Retrieve the WeightsMethods inherited from class org.drip.sequence.functional.MultivariateRandom
conditionalTargetVariateMetrics, conditionalTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, unconditionalTargetVariateMetricsMethods inherited from class org.drip.function.definition.RdToR1
conditionNumber, conditionNumberL2, conditionNumberLInfinity, conditionNumberLp, derivative, differential, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInputMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
GlivenkoCantelliUniformDeviation
public GlivenkoCantelliUniformDeviation(BoundedIdempotentUnivariateRandom biur, double[] adblWeight) throws java.lang.ExceptionGlivenkoCantelliUniformDeviation Constructor- Parameters:
biur- The Bounded Idempotent Univariate Random FunctionadblWeight- Array of Variable Weights- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
Create
public static final GlivenkoCantelliUniformDeviation Create(BoundedIdempotentUnivariateRandom biur, int iNumSample)GlivenkoCantelliUniformDeviation Constructor- Parameters:
biur- The Bounded Idempotent Univariate Random FunctioniNumSample- Number of Empirical Samples- Returns:
- The GlivenkoCantelliUniformDeviation Instance
-
separableUnivariateRandom
Retrieve the Separable Bounded Idempotent Univariate Random Function- Returns:
- The Separable Bounded Idempotent Univariate Random Function
-
weights
public double[] weights()Retrieve the Weights- Returns:
- The Weights
-
dimension
public int dimension()Description copied from class:RdToR1Retrieve the Dimension of the Input Variate -
evaluate
public double evaluate(double[] adblVariate) throws java.lang.ExceptionDescription copied from class:RdToR1Evaluate for the given Input Variates -
targetVariateVarianceBound
public double targetVariateVarianceBound(int iTargetVariateIndex) throws java.lang.ExceptionDescription copied from class:BoundedMultivariateRandomRetrieve the Maximal Agnostic Variance Bound over the Non-target Variate Space for the Target Variate- Specified by:
targetVariateVarianceBoundin classBoundedMultivariateRandom- Parameters:
iTargetVariateIndex- The Index corresponding to the Variate on which the Bound is sought- Returns:
- The Maximal Agnostic Bound over the Non-target Variate Space for the Target Variate
- Throws:
java.lang.Exception- Thrown if the Inputs are invalid
-
targetVariateVariance
public double targetVariateVariance(int iTargetVariateIndex) throws java.lang.ExceptionDescription copied from interface:SeparableMultivariateRandomCompute the Variance associated with the Target Variate Function- Specified by:
targetVariateVariancein interfaceSeparableMultivariateRandom- Parameters:
iTargetVariateIndex- The Target Variate Index- Returns:
- Variance associated with the Target Variate Function
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-