Package org.drip.sequence.functional
Class EfronSteinMetrics
java.lang.Object
org.drip.sequence.functional.EfronSteinMetrics
- Direct Known Subclasses:
EmpiricalPenaltySupremumMetrics
public class EfronSteinMetrics
extends java.lang.Object
EfronSteinMetrics contains the Variance-based non-exponential Sample Distribution/Bounding Metrics
and Agnostic Bounds related to the Functional Transformation of the specified Sequence.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Functional
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description EfronSteinMetrics(MultivariateRandom func, SingleSequenceAgnosticMetrics[] aSSAM)
EfronSteinMetrics Constructor -
Method Summary
Modifier and Type Method Description double
boundedVarianceUpperBound()
Compute the Multivariate Variance Upper Bound using the Bounded Differences Supportdouble
efronSteinSteeleBound(SingleSequenceAgnosticMetrics[] aSSAMGhost)
Compute the Efron-Stein-Steele Variance Upper Bound using the Ghost VariablesRdToR1
function()
Retrieve the Multivariate Objective Functiondouble
ghostVarianceUpperBound(SingleSequenceAgnosticMetrics[] aSSAMGhost)
Compute the Variance Upper Bound using the Ghost VariablesSingleSequenceAgnosticMetrics[]
ghostVariateVarianceMetrics(SingleSequenceAgnosticMetrics[] aSSAMGhost)
Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variate Using the Supplied Ghost Variate Sequencedouble
martingaleVarianceUpperBound()
Compute the Multivariate Variance Upper Bound using the Martingale Differences MethodSingleSequenceAgnosticMetrics[]
pivotedDifferenceSequenceMetrics(MultivariateRandom funcPivot)
Compute the Function Sequence Agnostic Metrics associated with each Variate around the Pivot Point provided by the Pivot Functiondouble
pivotVarianceUpperBound(MultivariateRandom funcPivot)
Compute the Function Variance Upper Bound using the supplied Multivariate Pivoting Functiondouble
separableVarianceUpperBound()
Compute the Multivariate Variance Upper Bound using the Separable Variance BoundSingleSequenceAgnosticMetrics[]
sequenceMetrics()
Retrieve the Array of the Single Sequence Agnostic MetricsSingleSequenceAgnosticMetrics[]
symmetrizedDifferenceSequenceMetrics(SingleSequenceAgnosticMetrics[] aSSAMGhost)
Compute the Function Sequence Agnostic Metrics associated with each Variate using the specified Ghost Symmetric Variable CopySingleSequenceAgnosticMetrics[]
variateFunctionVarianceMetrics()
Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variatedouble[][]
variateSequence(SingleSequenceAgnosticMetrics[] aSSAM)
Extract the Full Variate Array SequenceMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
EfronSteinMetrics
public EfronSteinMetrics(MultivariateRandom func, SingleSequenceAgnosticMetrics[] aSSAM) throws java.lang.ExceptionEfronSteinMetrics Constructor- Parameters:
func
- Multivariate Objective FunctionaSSAM
- Array of the individual Single Sequence Metrics- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
function
Retrieve the Multivariate Objective Function- Returns:
- The Multivariate Objective Function Instance
-
sequenceMetrics
Retrieve the Array of the Single Sequence Agnostic Metrics- Returns:
- The Array of the Single Sequence Agnostic Metrics
-
variateSequence
Extract the Full Variate Array Sequence- Parameters:
aSSAM
- Array of the individual Single Sequence Metrics- Returns:
- The Full Variate Array Sequence
-
variateFunctionVarianceMetrics
Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variate- Returns:
- The Array of the Associated Sequence Metrics
-
ghostVariateVarianceMetrics
public SingleSequenceAgnosticMetrics[] ghostVariateVarianceMetrics(SingleSequenceAgnosticMetrics[] aSSAMGhost)Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variate Using the Supplied Ghost Variate Sequence- Parameters:
aSSAMGhost
- Array of the Ghost Single Sequence Metrics- Returns:
- The Array of the Associated Sequence Metrics
-
symmetrizedDifferenceSequenceMetrics
public SingleSequenceAgnosticMetrics[] symmetrizedDifferenceSequenceMetrics(SingleSequenceAgnosticMetrics[] aSSAMGhost)Compute the Function Sequence Agnostic Metrics associated with each Variate using the specified Ghost Symmetric Variable Copy- Parameters:
aSSAMGhost
- Array of the Ghost Single Sequence Metrics- Returns:
- The Array of the Associated Sequence Metrics
-
pivotedDifferenceSequenceMetrics
public SingleSequenceAgnosticMetrics[] pivotedDifferenceSequenceMetrics(MultivariateRandom funcPivot)Compute the Function Sequence Agnostic Metrics associated with each Variate around the Pivot Point provided by the Pivot Function- Parameters:
funcPivot
- The Pivot Function- Returns:
- The Array of the Associated Sequence Metrics
-
martingaleVarianceUpperBound
public double martingaleVarianceUpperBound() throws java.lang.ExceptionCompute the Multivariate Variance Upper Bound using the Martingale Differences Method- Returns:
- The Multivariate Variance Upper Bound using the Martingale Differences Method
- Throws:
java.lang.Exception
- Thrown if the Upper Bound cannot be calculated
-
ghostVarianceUpperBound
public double ghostVarianceUpperBound(SingleSequenceAgnosticMetrics[] aSSAMGhost) throws java.lang.ExceptionCompute the Variance Upper Bound using the Ghost Variables- Parameters:
aSSAMGhost
- Array of the Ghost Single Sequence Metrics- Returns:
- The Variance Upper Bound using the Ghost Variables
- Throws:
java.lang.Exception
- Thrown if the Upper Bound cannot be calculated
-
efronSteinSteeleBound
public double efronSteinSteeleBound(SingleSequenceAgnosticMetrics[] aSSAMGhost) throws java.lang.ExceptionCompute the Efron-Stein-Steele Variance Upper Bound using the Ghost Variables- Parameters:
aSSAMGhost
- Array of the Ghost Single Sequence Metrics- Returns:
- The Efron-Stein-Steele Variance Upper Bound using the Ghost Variables
- Throws:
java.lang.Exception
- Thrown if the Upper Bound cannot be calculated
-
pivotVarianceUpperBound
Compute the Function Variance Upper Bound using the supplied Multivariate Pivoting Function- Parameters:
funcPivot
- The Custom Multivariate Pivoting Function- Returns:
- The Function Variance Upper Bound using the supplied Multivariate Pivot Function
- Throws:
java.lang.Exception
- Thrown if the Variance Upper Bound cannot be calculated
-
boundedVarianceUpperBound
public double boundedVarianceUpperBound() throws java.lang.ExceptionCompute the Multivariate Variance Upper Bound using the Bounded Differences Support- Returns:
- The Multivariate Variance Upper Bound using the Bounded Differences Support
- Throws:
java.lang.Exception
- Thrown if the Upper Bound cannot be calculated
-
separableVarianceUpperBound
public double separableVarianceUpperBound() throws java.lang.ExceptionCompute the Multivariate Variance Upper Bound using the Separable Variance Bound- Returns:
- The Multivariate Variance Upper Bound using the Separable Variance Bound
- Throws:
java.lang.Exception
- Thrown if the Upper Bound cannot be calculated
-