Package org.drip.sequence.functional
Class EfronSteinMetrics
java.lang.Object
org.drip.sequence.functional.EfronSteinMetrics
- Direct Known Subclasses:
EmpiricalPenaltySupremumMetrics
public class EfronSteinMetrics
extends java.lang.Object
EfronSteinMetrics contains the Variance-based non-exponential Sample Distribution/Bounding Metrics
and Agnostic Bounds related to the Functional Transformation of the specified Sequence.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Functional
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description EfronSteinMetrics(MultivariateRandom func, SingleSequenceAgnosticMetrics[] aSSAM)EfronSteinMetrics Constructor -
Method Summary
Modifier and Type Method Description doubleboundedVarianceUpperBound()Compute the Multivariate Variance Upper Bound using the Bounded Differences SupportdoubleefronSteinSteeleBound(SingleSequenceAgnosticMetrics[] aSSAMGhost)Compute the Efron-Stein-Steele Variance Upper Bound using the Ghost VariablesRdToR1function()Retrieve the Multivariate Objective FunctiondoubleghostVarianceUpperBound(SingleSequenceAgnosticMetrics[] aSSAMGhost)Compute the Variance Upper Bound using the Ghost VariablesSingleSequenceAgnosticMetrics[]ghostVariateVarianceMetrics(SingleSequenceAgnosticMetrics[] aSSAMGhost)Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variate Using the Supplied Ghost Variate SequencedoublemartingaleVarianceUpperBound()Compute the Multivariate Variance Upper Bound using the Martingale Differences MethodSingleSequenceAgnosticMetrics[]pivotedDifferenceSequenceMetrics(MultivariateRandom funcPivot)Compute the Function Sequence Agnostic Metrics associated with each Variate around the Pivot Point provided by the Pivot FunctiondoublepivotVarianceUpperBound(MultivariateRandom funcPivot)Compute the Function Variance Upper Bound using the supplied Multivariate Pivoting FunctiondoubleseparableVarianceUpperBound()Compute the Multivariate Variance Upper Bound using the Separable Variance BoundSingleSequenceAgnosticMetrics[]sequenceMetrics()Retrieve the Array of the Single Sequence Agnostic MetricsSingleSequenceAgnosticMetrics[]symmetrizedDifferenceSequenceMetrics(SingleSequenceAgnosticMetrics[] aSSAMGhost)Compute the Function Sequence Agnostic Metrics associated with each Variate using the specified Ghost Symmetric Variable CopySingleSequenceAgnosticMetrics[]variateFunctionVarianceMetrics()Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variatedouble[][]variateSequence(SingleSequenceAgnosticMetrics[] aSSAM)Extract the Full Variate Array SequenceMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
EfronSteinMetrics
public EfronSteinMetrics(MultivariateRandom func, SingleSequenceAgnosticMetrics[] aSSAM) throws java.lang.ExceptionEfronSteinMetrics Constructor- Parameters:
func- Multivariate Objective FunctionaSSAM- Array of the individual Single Sequence Metrics- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
function
Retrieve the Multivariate Objective Function- Returns:
- The Multivariate Objective Function Instance
-
sequenceMetrics
Retrieve the Array of the Single Sequence Agnostic Metrics- Returns:
- The Array of the Single Sequence Agnostic Metrics
-
variateSequence
Extract the Full Variate Array Sequence- Parameters:
aSSAM- Array of the individual Single Sequence Metrics- Returns:
- The Full Variate Array Sequence
-
variateFunctionVarianceMetrics
Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variate- Returns:
- The Array of the Associated Sequence Metrics
-
ghostVariateVarianceMetrics
public SingleSequenceAgnosticMetrics[] ghostVariateVarianceMetrics(SingleSequenceAgnosticMetrics[] aSSAMGhost)Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variate Using the Supplied Ghost Variate Sequence- Parameters:
aSSAMGhost- Array of the Ghost Single Sequence Metrics- Returns:
- The Array of the Associated Sequence Metrics
-
symmetrizedDifferenceSequenceMetrics
public SingleSequenceAgnosticMetrics[] symmetrizedDifferenceSequenceMetrics(SingleSequenceAgnosticMetrics[] aSSAMGhost)Compute the Function Sequence Agnostic Metrics associated with each Variate using the specified Ghost Symmetric Variable Copy- Parameters:
aSSAMGhost- Array of the Ghost Single Sequence Metrics- Returns:
- The Array of the Associated Sequence Metrics
-
pivotedDifferenceSequenceMetrics
public SingleSequenceAgnosticMetrics[] pivotedDifferenceSequenceMetrics(MultivariateRandom funcPivot)Compute the Function Sequence Agnostic Metrics associated with each Variate around the Pivot Point provided by the Pivot Function- Parameters:
funcPivot- The Pivot Function- Returns:
- The Array of the Associated Sequence Metrics
-
martingaleVarianceUpperBound
public double martingaleVarianceUpperBound() throws java.lang.ExceptionCompute the Multivariate Variance Upper Bound using the Martingale Differences Method- Returns:
- The Multivariate Variance Upper Bound using the Martingale Differences Method
- Throws:
java.lang.Exception- Thrown if the Upper Bound cannot be calculated
-
ghostVarianceUpperBound
public double ghostVarianceUpperBound(SingleSequenceAgnosticMetrics[] aSSAMGhost) throws java.lang.ExceptionCompute the Variance Upper Bound using the Ghost Variables- Parameters:
aSSAMGhost- Array of the Ghost Single Sequence Metrics- Returns:
- The Variance Upper Bound using the Ghost Variables
- Throws:
java.lang.Exception- Thrown if the Upper Bound cannot be calculated
-
efronSteinSteeleBound
public double efronSteinSteeleBound(SingleSequenceAgnosticMetrics[] aSSAMGhost) throws java.lang.ExceptionCompute the Efron-Stein-Steele Variance Upper Bound using the Ghost Variables- Parameters:
aSSAMGhost- Array of the Ghost Single Sequence Metrics- Returns:
- The Efron-Stein-Steele Variance Upper Bound using the Ghost Variables
- Throws:
java.lang.Exception- Thrown if the Upper Bound cannot be calculated
-
pivotVarianceUpperBound
Compute the Function Variance Upper Bound using the supplied Multivariate Pivoting Function- Parameters:
funcPivot- The Custom Multivariate Pivoting Function- Returns:
- The Function Variance Upper Bound using the supplied Multivariate Pivot Function
- Throws:
java.lang.Exception- Thrown if the Variance Upper Bound cannot be calculated
-
boundedVarianceUpperBound
public double boundedVarianceUpperBound() throws java.lang.ExceptionCompute the Multivariate Variance Upper Bound using the Bounded Differences Support- Returns:
- The Multivariate Variance Upper Bound using the Bounded Differences Support
- Throws:
java.lang.Exception- Thrown if the Upper Bound cannot be calculated
-
separableVarianceUpperBound
public double separableVarianceUpperBound() throws java.lang.ExceptionCompute the Multivariate Variance Upper Bound using the Separable Variance Bound- Returns:
- The Multivariate Variance Upper Bound using the Separable Variance Bound
- Throws:
java.lang.Exception- Thrown if the Upper Bound cannot be calculated
-