Package org.drip.learning.rxtor1
Class EmpiricalPenaltySupremumMetrics
java.lang.Object
org.drip.sequence.functional.EfronSteinMetrics
org.drip.learning.rxtor1.EmpiricalPenaltySupremumMetrics
public class EmpiricalPenaltySupremumMetrics extends EfronSteinMetrics
EmpiricalPenaltySupremumMetrics computes Efron-Stein Metrics for the Penalty Supremum Rx
To R1 Functions.
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Empirical Loss Penalizer
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description EmpiricalPenaltySupremumMetrics(EmpiricalPenaltySupremumEstimator epse, SingleSequenceAgnosticMetrics[] aSSAM, MeasureConcentrationExpectationBound mceb)
EmpiricalPenaltySupremumMetrics Constructor -
Method Summary
Modifier and Type Method Description double
dataDependentVarianceBound(double[] adblVariate)
Retrieve the Univariate Sequence Dependent Variance Bounddouble
dataDependentVarianceBound(double[][] aadblVariate)
Retrieve the Multivariate Sequence Dependent Variance BoundEmpiricalPenaltySupremumEstimator
empiricalPenaltySupremumEstimator()
Retrieve the Empirical Penalty Supremum Functiondouble
lugosiVarianceBound(double[] adblVariate)
Compute the Lugosi Data-Dependent Variance Bound from the Sample and the Classifier Class Asymptotic Behavior.double
lugosiVarianceBound(double[][] aadblVariate)
Compute the Lugosi Data-Dependent Variance Bound from the Sample and the Classifier Class Asymptotic Behavior.Methods inherited from class org.drip.sequence.functional.EfronSteinMetrics
boundedVarianceUpperBound, efronSteinSteeleBound, function, ghostVarianceUpperBound, ghostVariateVarianceMetrics, martingaleVarianceUpperBound, pivotedDifferenceSequenceMetrics, pivotVarianceUpperBound, separableVarianceUpperBound, sequenceMetrics, symmetrizedDifferenceSequenceMetrics, variateFunctionVarianceMetrics, variateSequence
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
EmpiricalPenaltySupremumMetrics
public EmpiricalPenaltySupremumMetrics(EmpiricalPenaltySupremumEstimator epse, SingleSequenceAgnosticMetrics[] aSSAM, MeasureConcentrationExpectationBound mceb) throws java.lang.ExceptionEmpiricalPenaltySupremumMetrics Constructor- Parameters:
epse
- R^x To R^1 The Empirical Penalty Supremum Estimator InstanceaSSAM
- Array of the Individual Single Sequence Metricsmceb
- The Concentration-of-Measure Loss Expectation Bound Estimator- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
empiricalPenaltySupremumEstimator
Retrieve the Empirical Penalty Supremum Function- Returns:
- The Empirical Penalty Supremum Function
-
dataDependentVarianceBound
public double dataDependentVarianceBound(double[] adblVariate) throws java.lang.ExceptionRetrieve the Univariate Sequence Dependent Variance Bound- Parameters:
adblVariate
- The univariate Sequence- Returns:
- The Univariate Sequence Dependent Variance Bound
- Throws:
java.lang.Exception
- Thrown if the Date Dependent Variance Bound cannot be Computed
-
dataDependentVarianceBound
public double dataDependentVarianceBound(double[][] aadblVariate) throws java.lang.ExceptionRetrieve the Multivariate Sequence Dependent Variance Bound- Parameters:
aadblVariate
- The Multivariate Sequence- Returns:
- The Multivariate Sequence Dependent Variance Bound
- Throws:
java.lang.Exception
- Thrown if the Date Dependent Variance Bound cannot be Computed
-
lugosiVarianceBound
public double lugosiVarianceBound(double[] adblVariate) throws java.lang.ExceptionCompute the Lugosi Data-Dependent Variance Bound from the Sample and the Classifier Class Asymptotic Behavior. The Reference is: G. Lugosi (2002): Pattern Classification and Learning Theory, in: L.Gyorfi, editor, Principles of Non-parametric Learning, 5-62, Springer, Wien.- Parameters:
adblVariate
- The Sample Univariate Array- Returns:
- The Lugosi Data-Dependent Variance Bound
- Throws:
java.lang.Exception
- Thrown if the Lugosi Data-Dependent Variance Bound cannot be computed
-
lugosiVarianceBound
public double lugosiVarianceBound(double[][] aadblVariate) throws java.lang.ExceptionCompute the Lugosi Data-Dependent Variance Bound from the Sample and the Classifier Class Asymptotic Behavior. The Reference is: G. Lugosi (2002): Pattern Classification and Learning Theory, in: L.Gyorfi, editor, Principles of Non-parametric Learning, 5-62, Springer, Wien.- Parameters:
aadblVariate
- The Sample Multivariate Array- Returns:
- The Lugosi Data-Dependent Variance Bound
- Throws:
java.lang.Exception
- Thrown if the Lugosi Data-Dependent Variance Bound cannot be computed
-