Class EmpiricalPenaltySupremumMetrics

java.lang.Object
org.drip.sequence.functional.EfronSteinMetrics
org.drip.learning.rxtor1.EmpiricalPenaltySupremumMetrics

public class EmpiricalPenaltySupremumMetrics
extends EfronSteinMetrics
EmpiricalPenaltySupremumMetrics computes Efron-Stein Metrics for the Penalty Supremum Rx To R1 Functions.

Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • EmpiricalPenaltySupremumMetrics

      public EmpiricalPenaltySupremumMetrics​(EmpiricalPenaltySupremumEstimator epse, SingleSequenceAgnosticMetrics[] aSSAM, MeasureConcentrationExpectationBound mceb) throws java.lang.Exception
      EmpiricalPenaltySupremumMetrics Constructor
      Parameters:
      epse - R^x To R^1 The Empirical Penalty Supremum Estimator Instance
      aSSAM - Array of the Individual Single Sequence Metrics
      mceb - The Concentration-of-Measure Loss Expectation Bound Estimator
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • empiricalPenaltySupremumEstimator

      public EmpiricalPenaltySupremumEstimator empiricalPenaltySupremumEstimator()
      Retrieve the Empirical Penalty Supremum Function
      Returns:
      The Empirical Penalty Supremum Function
    • dataDependentVarianceBound

      public double dataDependentVarianceBound​(double[] adblVariate) throws java.lang.Exception
      Retrieve the Univariate Sequence Dependent Variance Bound
      Parameters:
      adblVariate - The univariate Sequence
      Returns:
      The Univariate Sequence Dependent Variance Bound
      Throws:
      java.lang.Exception - Thrown if the Date Dependent Variance Bound cannot be Computed
    • dataDependentVarianceBound

      public double dataDependentVarianceBound​(double[][] aadblVariate) throws java.lang.Exception
      Retrieve the Multivariate Sequence Dependent Variance Bound
      Parameters:
      aadblVariate - The Multivariate Sequence
      Returns:
      The Multivariate Sequence Dependent Variance Bound
      Throws:
      java.lang.Exception - Thrown if the Date Dependent Variance Bound cannot be Computed
    • lugosiVarianceBound

      public double lugosiVarianceBound​(double[] adblVariate) throws java.lang.Exception
      Compute the Lugosi Data-Dependent Variance Bound from the Sample and the Classifier Class Asymptotic Behavior. The Reference is: G. Lugosi (2002): Pattern Classification and Learning Theory, in: L.Gyorfi, editor, Principles of Non-parametric Learning, 5-62, Springer, Wien.
      Parameters:
      adblVariate - The Sample Univariate Array
      Returns:
      The Lugosi Data-Dependent Variance Bound
      Throws:
      java.lang.Exception - Thrown if the Lugosi Data-Dependent Variance Bound cannot be computed
    • lugosiVarianceBound

      public double lugosiVarianceBound​(double[][] aadblVariate) throws java.lang.Exception
      Compute the Lugosi Data-Dependent Variance Bound from the Sample and the Classifier Class Asymptotic Behavior. The Reference is: G. Lugosi (2002): Pattern Classification and Learning Theory, in: L.Gyorfi, editor, Principles of Non-parametric Learning, 5-62, Springer, Wien.
      Parameters:
      aadblVariate - The Sample Multivariate Array
      Returns:
      The Lugosi Data-Dependent Variance Bound
      Throws:
      java.lang.Exception - Thrown if the Lugosi Data-Dependent Variance Bound cannot be computed