Package org.drip.spaces.functionclass
Class NormedRxToNormedRdFinite
java.lang.Object
org.drip.spaces.functionclass.NormedRxToNormedRxFinite
org.drip.spaces.functionclass.NormedRxToNormedRdFinite
- Direct Known Subclasses:
HilbertRxToSupremumRdFinite
public class NormedRxToNormedRdFinite extends NormedRxToNormedRxFinite
NormedRxToNormedRdFinite implements the Class F with f E f : Normed Rx To Normed
Rd Space of Finite Functions. The References are:
- Carl, B. (1985): Inequalities of the Bernstein-Jackson type and the Degree of Compactness of Operators in Banach Spaces Annals of the Fourier Institute 35 (3) 79-118
- Carl, B., and I. Stephani (1990): Entropy, Compactness, and the Approximation of Operators Cambridge University Press Cambridge UK
- Williamson, R. C., A. J. Smola, and B. Scholkopf (2000): Entropy Numbers of Linear Function Classes, in: Proceedings of the 13th Annual Conference on Computational Learning Theory ACM New York
- NormedRxToNormedRdFinite Constructor
- Retrieve the Array of Function Spaces in the Class
- Estimate for the Function Class Population Covering Number Array, one for each dimension
- Estimate for the Function Class Population Supremum Covering Number Array, one for each dimension
- Estimate for the Scale-Sensitive Sample Covering Number Array for the specified Cover Size
- Estimate for the Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
- Compute the Population Rd Metric Norm
- Compute the Population Rd Supremum Norm
- Compute the Sample Rd Metric Norm
- Compute the Sample Rd Supremum Norm
- Module = Computational Core Module
- Library = Statistical Learning Library
- Project = R1 and Rd Vector/Tensor Spaces (Validated and/or Normed), and Function Classes
- Package = Normed Finite Spaces Function Class
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description NormedRxToNormedRdFinite(double maureyConstant, NormedRxToNormedRd[] normedRxToNormedRdArray)NormedRxToNormedRdFinite Constructor -
Method Summary
Modifier and Type Method Description FunctionClassCoveringBoundsagnosticCoveringNumberBounds()Retrieve the Agnostic Covering Number Upper/Lower Bounds for the Function ClassNormedRxToNormedRd[]functionSpaces()Retrieve the Array of Function Spaces in the ClassGeneralizedMetricVectorSpaceinputMetricVectorSpace()Retrieve the Input Vector SpacedoubleoperatorPopulationMetricNorm()Compute the Operator Population Metric NormdoubleoperatorPopulationSupremumNorm()Compute the Operator Population Supremum NormdoubleoperatorSampleMetricNorm(GeneralizedValidatedVector generalizedValidatedVector)Compute the Operator Sample Metric NormdoubleoperatorSampleSupremumNorm(GeneralizedValidatedVector generalizedValidatedVector)Compute the Operator Sample Supremum NormRdNormedoutputMetricVectorSpace()Retrieve the Output Vector Spacedouble[]populationCoveringNumber(double cover)Estimate for the Function Class Population Covering Number Array, one for each dimensiondouble[]populationCoveringNumber(double[] coverArray)Estimate for the Function Class Population Covering Number Array, one for each dimensiondouble[]populationRdMetricNorm()Compute the Population Rd Metric Normdouble[]populationRdSupremumNorm()Compute the Population Rd Supremum Normdouble[]populationSupremumCoveringNumber(double cover)Estimate for the Function Class Population Supremum Covering Number Array, one for each dimensiondouble[]populationSupremumCoveringNumber(double[] coverArray)Estimate for the Function Class Population Supremum Covering Number Array, one for each dimensiondouble[]sampleCoveringNumber(GeneralizedValidatedVector generalizedValidatedVector, double cover)Estimate for the Scale-Sensitive Sample Covering Number Array for the specified Cover Sizedouble[]sampleCoveringNumber(GeneralizedValidatedVector generalizedValidatedVector, double[] coverArray)Estimate for the Scale-Sensitive Sample Covering Number Array for the specified Cover Sizedouble[]sampleRdMetricNorm(GeneralizedValidatedVector generalizedValidatedVector)Compute the Sample Rd Metric Normdouble[]sampleRdSupremumNorm(GeneralizedValidatedVector generalizedValidatedVector)Compute the Sample Rd Supremum Normdouble[]sampleSupremumCoveringNumber(GeneralizedValidatedVector generalizedValidatedVector, double cover)Estimate for the Scale-Sensitive Sample Supremum Covering Number for the specified Cover Sizedouble[]sampleSupremumCoveringNumber(GeneralizedValidatedVector generalizedValidatedVector, double[] coverArray)Estimate for the Scale-Sensitive Sample Supremum Covering Number for the specified Cover SizeMethods inherited from class org.drip.spaces.functionclass.NormedRxToNormedRxFinite
maureyConstant, outputDimension, populationMetricCoveringBounds, populationSupremumCoveringBounds, sampleMetricCoveringBounds, sampleSupremumCoveringBounds, scaleSensitiveCoveringBoundsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
NormedRxToNormedRdFinite
public NormedRxToNormedRdFinite(double maureyConstant, NormedRxToNormedRd[] normedRxToNormedRdArray) throws java.lang.ExceptionNormedRxToNormedRdFinite Constructor- Parameters:
maureyConstant- Maurey ConstantnormedRxToNormedRdArray- Array of the Normed Rx To Normed Rd Spaces- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
agnosticCoveringNumberBounds
Description copied from class:NormedRxToNormedRxFiniteRetrieve the Agnostic Covering Number Upper/Lower Bounds for the Function Class- Specified by:
agnosticCoveringNumberBoundsin classNormedRxToNormedRxFinite- Returns:
- The Agnostic Covering Number Upper/Lower Bounds for the Function Class
-
inputMetricVectorSpace
Description copied from class:NormedRxToNormedRxFiniteRetrieve the Input Vector Space- Specified by:
inputMetricVectorSpacein classNormedRxToNormedRxFinite- Returns:
- The Input Vector Space
-
outputMetricVectorSpace
Description copied from class:NormedRxToNormedRxFiniteRetrieve the Output Vector Space- Specified by:
outputMetricVectorSpacein classNormedRxToNormedRxFinite- Returns:
- The Output Vector Space
-
functionSpaces
Retrieve the Array of Function Spaces in the Class- Returns:
- The Array of Function Spaces in the Class
-
populationCoveringNumber
public double[] populationCoveringNumber(double[] coverArray)Estimate for the Function Class Population Covering Number Array, one for each dimension- Parameters:
coverArray- The Size of the Cover Array- Returns:
- Function Class Population Covering Number Estimate Array, one for each dimension
-
populationCoveringNumber
public double[] populationCoveringNumber(double cover)Estimate for the Function Class Population Covering Number Array, one for each dimension- Parameters:
cover- The Cover- Returns:
- Function Class Population Covering Number Estimate Array, one for each dimension
-
populationSupremumCoveringNumber
public double[] populationSupremumCoveringNumber(double[] coverArray)Estimate for the Function Class Population Supremum Covering Number Array, one for each dimension- Parameters:
coverArray- The Size of the Cover Array- Returns:
- Function Class Population Supremum Covering Number Estimate Array, one for each dimension
-
populationSupremumCoveringNumber
public double[] populationSupremumCoveringNumber(double cover)Estimate for the Function Class Population Supremum Covering Number Array, one for each dimension- Parameters:
cover- The Cover- Returns:
- Function Class Population Covering Supremum Number Estimate Array, one for each dimension
-
sampleCoveringNumber
public double[] sampleCoveringNumber(GeneralizedValidatedVector generalizedValidatedVector, double[] coverArray)Estimate for the Scale-Sensitive Sample Covering Number Array for the specified Cover Size- Parameters:
generalizedValidatedVector- The Validated Instance Vector SequencecoverArray- The Size of the Cover Array- Returns:
- The Scale-Sensitive Sample Covering Number Array for the specified Cover Size
-
sampleCoveringNumber
public double[] sampleCoveringNumber(GeneralizedValidatedVector generalizedValidatedVector, double cover)Estimate for the Scale-Sensitive Sample Covering Number Array for the specified Cover Size- Parameters:
generalizedValidatedVector- The Validated Instance Vector Sequencecover- The Size of the Cover Array- Returns:
- The Scale-Sensitive Sample Covering Number Array for the specified Cover Size
-
sampleSupremumCoveringNumber
public double[] sampleSupremumCoveringNumber(GeneralizedValidatedVector generalizedValidatedVector, double[] coverArray)Estimate for the Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size- Parameters:
generalizedValidatedVector- The Validated Instance Vector SequencecoverArray- The Cover Array- Returns:
- The Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
-
sampleSupremumCoveringNumber
public double[] sampleSupremumCoveringNumber(GeneralizedValidatedVector generalizedValidatedVector, double cover)Estimate for the Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size- Parameters:
generalizedValidatedVector- The Validated Instance Vector Sequencecover- The Cover- Returns:
- The Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
-
populationRdMetricNorm
public double[] populationRdMetricNorm()Compute the Population Rd Metric Norm- Returns:
- The Population Rd Metric Norm
-
populationRdSupremumNorm
public double[] populationRdSupremumNorm()Compute the Population Rd Supremum Norm- Returns:
- The Population Rd Supremum Norm
-
sampleRdMetricNorm
Compute the Sample Rd Metric Norm- Parameters:
generalizedValidatedVector- The Validated Vector Space Instance- Returns:
- The Sample Rd Metric Norm
-
sampleRdSupremumNorm
Compute the Sample Rd Supremum Norm- Parameters:
generalizedValidatedVector- The Validated Vector Space Instance- Returns:
- The Sample Rd Supremum Norm
-
operatorPopulationMetricNorm
public double operatorPopulationMetricNorm() throws java.lang.ExceptionDescription copied from class:NormedRxToNormedRxFiniteCompute the Operator Population Metric Norm- Specified by:
operatorPopulationMetricNormin classNormedRxToNormedRxFinite- Returns:
- The Operator Population Metric Norm
- Throws:
java.lang.Exception- Thrown if the Operator Norm cannot be computed
-
operatorPopulationSupremumNorm
public double operatorPopulationSupremumNorm() throws java.lang.ExceptionDescription copied from class:NormedRxToNormedRxFiniteCompute the Operator Population Supremum Norm- Specified by:
operatorPopulationSupremumNormin classNormedRxToNormedRxFinite- Returns:
- The Operator Population Supremum Norm
- Throws:
java.lang.Exception- Thrown if the Operator Population Supremum Norm cannot be computed
-
operatorSampleMetricNorm
public double operatorSampleMetricNorm(GeneralizedValidatedVector generalizedValidatedVector) throws java.lang.ExceptionDescription copied from class:NormedRxToNormedRxFiniteCompute the Operator Sample Metric Norm- Specified by:
operatorSampleMetricNormin classNormedRxToNormedRxFinite- Parameters:
generalizedValidatedVector- The Validated Vector Space Instance- Returns:
- The Operator Sample Metric Norm
- Throws:
java.lang.Exception- Thrown if the Operator Norm cannot be computed
-
operatorSampleSupremumNorm
public double operatorSampleSupremumNorm(GeneralizedValidatedVector generalizedValidatedVector) throws java.lang.ExceptionDescription copied from class:NormedRxToNormedRxFiniteCompute the Operator Sample Supremum Norm- Specified by:
operatorSampleSupremumNormin classNormedRxToNormedRxFinite- Parameters:
generalizedValidatedVector- The Validated Vector Space Instance- Returns:
- The Operator Sample Supremum Norm
- Throws:
java.lang.Exception- Thrown if the Operator Sample Supremum Norm cannot be computed
-