Class RdHilbert

All Implemented Interfaces:
GeneralizedMetricVectorSpace, RdNormed, GeneralizedVector, RdGeneralizedVector

public class RdHilbert
extends RdBanach
RdHilbert implements the Bounded/Unbounded, Continuous l2 Rd Spaces. The Reference we've used is:

  • Carl, B., and I. Stephani (1990): Entropy, Compactness, and the Approximation of Operators Cambridge University Press Cambridge UK
It provides the following Functionality:
  • Construct the Standard lp R2 Hilbert Space Instance
  • RdHilbert Space Constructor

Module Computational Core Module
Library Statistical Learning Library
Project R1 and Rd Vector/Tensor Spaces (Validated and/or Normed), and Function Classes
Package Hilbert/Banach Normed Metric Spaces
Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • RdHilbert

      public RdHilbert​(R1ContinuousVector[] r1ContinuousVectorArray, RdContinuous rd) throws java.lang.Exception
      RdHilbert Space Constructor
      Parameters:
      r1ContinuousVectorArray - Array of R1 Continuous Vector Spaces
      rd - The Multivariate Borel Sigma Measure
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • StandardHilbert

      public static final RdHilbert StandardHilbert​(int iDimension, RdContinuous distRd)
      Construct the Standard l2 Rd Hilbert Space Instance
      Parameters:
      iDimension - The Space Dimension
      distRd - The Rd Borel Sigma Measure
      Returns:
      The Standard l2 Rd Hilbert Space Instance
    • sampleMetricNorm

      public double sampleMetricNorm​(double[] xArray) throws java.lang.Exception
      Description copied from interface: RdNormed
      Compute the Metric Norm of the Sample
      Specified by:
      sampleMetricNorm in interface RdNormed
      Overrides:
      sampleMetricNorm in class RdBanach
      Parameters:
      xArray - The Sample
      Returns:
      The Metric Norm of the Sample
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid