Class HypergeometricEstimator
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.specialfunction.definition.HypergeometricEstimator
- Direct Known Subclasses:
ConfluentHypergeometricEstimator
,EllipticEIntegralEstimator
,EllipticKIntegralEstimator
,JacobiEstimator
,LegendreEstimator
,RegularHypergeometricEstimator
public abstract class HypergeometricEstimator extends R1ToR1
HypergeometricEstimator exposes the parameters Common to the Variants of the Hyper-geometric
Function and its Jacobian. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Retrieve the Parameters Instance
Module | Product Core Module |
Library | Fixed Income Analytics |
Project | Special Function Implementation and Analysis |
Package | Definition of Special Function Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description HypergeometricParameters
hypergeometricParameters()
Retrieve the Parameters InstanceMethods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, evaluate, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
hypergeometricParameters
Retrieve the Parameters Instance- Returns:
- The Parameters Instance
-