Class RegularHypergeometricEstimator
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.specialfunction.definition.HypergeometricEstimator
org.drip.specialfunction.definition.RegularHypergeometricEstimator
- Direct Known Subclasses:
EulerQuadratureEstimator
public abstract class RegularHypergeometricEstimator extends HypergeometricEstimator
RegularHypergeometricEstimator exposes the Stubs for estimating the 2F1 Hyper-geometric Function
and its Jacobian using the 2F1 Hyper-geometric Function. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Evaluate Regular Hyper-geometric Function
- Albinate (i.e., Clone + Mutate) an Instance of Regular Hyper-geometric Estimator
- Construct the Kummer24 Euler Transformation on 2F1
- Construct the Kummer24 Pfaff First Transformation on 2F1
- Construct the Kummer24 Pfaff Second Transformation on 2F1
Module | Product Core Module |
Library | Fixed Income Analytics |
Project | Special Function Implementation and Analysis |
Package | Definition of Special Function Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description abstract RegularHypergeometricEstimator
albinate(HypergeometricParameters hypergeometricParametersAlbinate, R1ToR1 valueScaler, R1ToR1 zTransformer)
Albinate (i.e., Clone + Mutate) an Instance of Regular Hyper-geometric EstimatorRegularHypergeometricEstimator
albinateEuler()
Construct the Kummer24 Euler Transformation on 2F1RegularHypergeometricEstimator
albinatePfaffFirst()
Construct the Kummer24 Pfaff First Transformation on 2F1RegularHypergeometricEstimator
albinatePfaffSecond()
Construct the Kummer24 Pfaff Second Transformation on 2F1double
evaluate(double z)
Evaluate for the given variateabstract double
regularHypergeometric(double z)
Evaluate Regular Hyper-geometric FunctionMethods inherited from class org.drip.specialfunction.definition.HypergeometricEstimator
hypergeometricParameters
Methods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
evaluate
public double evaluate(double z) throws java.lang.ExceptionDescription copied from class:R1ToR1
Evaluate for the given variate -
regularHypergeometric
public abstract double regularHypergeometric(double z) throws java.lang.ExceptionEvaluate Regular Hyper-geometric Function- Parameters:
z
- Z- Returns:
- Regular Hyper-geometric Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
albinate
public abstract RegularHypergeometricEstimator albinate(HypergeometricParameters hypergeometricParametersAlbinate, R1ToR1 valueScaler, R1ToR1 zTransformer)Albinate (i.e., Clone + Mutate) an Instance of Regular Hyper-geometric Estimator- Parameters:
hypergeometricParametersAlbinate
- The Albination Hyper-geometric ParametersvalueScaler
- The Estimator Value ScalerzTransformer
- The Z Transformation Function- Returns:
- Albinated Instance of Regular Hyper-geometric Estimator
-
albinateEuler
Construct the Kummer24 Euler Transformation on 2F1- Returns:
- The Kummer24 Euler Transformation on 2F1
-
albinatePfaffFirst
Construct the Kummer24 Pfaff First Transformation on 2F1- Returns:
- The Kummer24 Pfaff First Transformation on 2F1
-
albinatePfaffSecond
Construct the Kummer24 Pfaff Second Transformation on 2F1- Returns:
- The Kummer24 Pfaff Second Transformation on 2F1
-