Class RegularHypergeometricEstimator
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.specialfunction.definition.HypergeometricEstimator
org.drip.specialfunction.definition.RegularHypergeometricEstimator
- Direct Known Subclasses:
EulerQuadratureEstimator
public abstract class RegularHypergeometricEstimator extends HypergeometricEstimator
RegularHypergeometricEstimator exposes the Stubs for estimating the 2F1 Hyper-geometric Function
and its Jacobian using the 2F1 Hyper-geometric Function. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Evaluate Regular Hyper-geometric Function
- Albinate (i.e., Clone + Mutate) an Instance of Regular Hyper-geometric Estimator
- Construct the Kummer24 Euler Transformation on 2F1
- Construct the Kummer24 Pfaff First Transformation on 2F1
- Construct the Kummer24 Pfaff Second Transformation on 2F1
| Module | Product Core Module |
| Library | Fixed Income Analytics |
| Project | Special Function Implementation and Analysis |
| Package | Definition of Special Function Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description abstract RegularHypergeometricEstimatoralbinate(HypergeometricParameters hypergeometricParametersAlbinate, R1ToR1 valueScaler, R1ToR1 zTransformer)Albinate (i.e., Clone + Mutate) an Instance of Regular Hyper-geometric EstimatorRegularHypergeometricEstimatoralbinateEuler()Construct the Kummer24 Euler Transformation on 2F1RegularHypergeometricEstimatoralbinatePfaffFirst()Construct the Kummer24 Pfaff First Transformation on 2F1RegularHypergeometricEstimatoralbinatePfaffSecond()Construct the Kummer24 Pfaff Second Transformation on 2F1doubleevaluate(double z)Evaluate for the given variateabstract doubleregularHypergeometric(double z)Evaluate Regular Hyper-geometric FunctionMethods inherited from class org.drip.specialfunction.definition.HypergeometricEstimator
hypergeometricParametersMethods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, integrate, maxima, maxima, minima, minima, poleResidueMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
evaluate
public double evaluate(double z) throws java.lang.ExceptionDescription copied from class:R1ToR1Evaluate for the given variate -
regularHypergeometric
public abstract double regularHypergeometric(double z) throws java.lang.ExceptionEvaluate Regular Hyper-geometric Function- Parameters:
z- Z- Returns:
- Regular Hyper-geometric Value
- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
albinate
public abstract RegularHypergeometricEstimator albinate(HypergeometricParameters hypergeometricParametersAlbinate, R1ToR1 valueScaler, R1ToR1 zTransformer)Albinate (i.e., Clone + Mutate) an Instance of Regular Hyper-geometric Estimator- Parameters:
hypergeometricParametersAlbinate- The Albination Hyper-geometric ParametersvalueScaler- The Estimator Value ScalerzTransformer- The Z Transformation Function- Returns:
- Albinated Instance of Regular Hyper-geometric Estimator
-
albinateEuler
Construct the Kummer24 Euler Transformation on 2F1- Returns:
- The Kummer24 Euler Transformation on 2F1
-
albinatePfaffFirst
Construct the Kummer24 Pfaff First Transformation on 2F1- Returns:
- The Kummer24 Pfaff First Transformation on 2F1
-
albinatePfaffSecond
Construct the Kummer24 Pfaff Second Transformation on 2F1- Returns:
- The Kummer24 Pfaff Second Transformation on 2F1
-