Class LegendreEstimator
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.specialfunction.definition.HypergeometricEstimator
org.drip.specialfunction.definition.LegendreEstimator
- Direct Known Subclasses:
Legendre
public abstract class LegendreEstimator extends HypergeometricEstimator
LegendreEstimator exposes the Stubs for estimating the Legendre Function and its Jacobian using the
2F1 Hyper-geometric Function. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Retrieve Legendre Alpha
- Retrieve Legendre Ceta
- Evaluate the Legendre Function
Module | Product Core Module |
Library | Fixed Income Analytics |
Project | Special Function Implementation and Analysis |
Package | Definition of Special Function Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Methods inherited from class org.drip.specialfunction.definition.HypergeometricEstimator
hypergeometricParameters
Methods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
alpha
public double alpha()Retrieve Legendre Alpha- Returns:
- The Legendre Alpha
-
ceta
public double ceta()Retrieve Legendre Ceta- Returns:
- The Legendre Ceta
-
evaluate
public double evaluate(double z) throws java.lang.ExceptionDescription copied from class:R1ToR1
Evaluate for the given variate -
legendre
public abstract double legendre(double z) throws java.lang.ExceptionEvaluate the Legendre Function- Parameters:
z
- Z- Returns:
- The Legendre Function Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-